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Abstract 
 

Social organizations are abstractly modeled by holarchies—self-similar connected 

networks—and intelligent complex adaptive multiagent systems—large networks of 

autonomous reasoning agents interacting via scaled processes.  However, little is known 

of how information shapes evolution in such organizations, a gap that can lead to 

misleading analytics. The research problem addressed in this study was the ineffective 

manner in which classical model-predict-control methods used in business analytics 

attempt to define organization evolution.  The purpose of the study was to construct an 

effective metamodel for organization evolution based on a proposed complex adaptive 

structure—the info-holarchy.  Theoretical foundations of this study were holarchies, 

complex adaptive systems, evolutionary theory, and quantum mechanics, among other 

recently developed physical and information theories.  Research questions addressed how 

information evolution patterns gleamed from the study’s inductive metamodel more aptly 

explained volatility in organization.  In this study, a hybrid grounded theory based on 

abstract inductive extensions of information theories was utilized as the research 

methodology.  An overarching heuristic metamodel was framed from the theoretical 

analysis of the properties of these extension theories and applied to business, neural, and 

computational entities.  This metamodel resulted in the synthesis of a metaphor for, and 

generalization of organization evolution, serving as the recommended and appropriate 

analytical tool to view business dynamics for future applications.  This study may 

manifest positive social change through a fundamental understanding of complexity in 

business from general information theories, resulting in more effective management. 
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Dedication 
 

I wish to present this work for all those interested in the truth of what information 

is, what it creates, and its uncharacteristic ubiquity in all things physical and not.  
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Chapter 1: Introduction to the Study 

 On the mesoscopic level of human existence, information streams supply the 

source for any input that eventually is crystallized into a perception of reality.  This 

reality is only manifested, in the end, by individualized receivers—sensors that are 

mechanized devices, biological wetware or particle-sized matter.  This study posited that 

from first principles, information as an abstract particle forms matter, energy, and 

physical fields, eventually leading to organization.  As an instantiation, the prototypical 

information-based business was treated as an abstraction of a techno-socio-economic 

organization.  More specifically, the evolution of organizations was constructed through 

the lens of adaptive game theory, unified physical principles of quantum gravity 

information, and an underlying organization model, the proposed info-holarchy.   

From this model, as a robust alternative to classical model-predict-control 

business analytics, patterns of evolution and morphology of an organization will be 

tracked and guided in virtual reality dashboard-caves—immersive 3-D environments 

utilizing multisensorial control and feedback devices.  In this chapter, historic and 

technical introductions will be made to physical and information theories and their post-

modern extensions to fuzzy, quantum, and other generalized uncertainty notions. Linkage 

will be made to complexity, nonlinear dynamics, information physics, and networks. This 

will prepare the reader for a thorough review of modern mathematical information theory 

and its extensions thereby revealing some surprising connections to post-modern physical 

theories in chapter 2. 
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Background 

Modeling and predicting natural and man-made phenomenon have always been 

the ultimate curiosity and goal of a sometimes maddening control-centric science, 

preceded only by the origin and evolution of matter in the universe.  Following this tenet 

especially are the motivations from organization theories: the prediction and control of 

the dynamics of human organizations.  Nonetheless, a unifying theory of organization, by 

its conspicuous absence, signals both a lack of ties to physical first principles and a 

fundamental misunderstanding about the limitations and impotence of predicting nature 

and human societies.  Regardless of this warning, stepwise experiential and experimental 

feedback continue to lure scientists into devising the next great unified framework.   

In the 18th century, Laplace proposed his metaphysical demon—the notion that 

utilizing Newton’s equations of motion to their ultimate conclusion reduced the 

description of the universe to a perfectly mechanical and reversible clock device 

(Laplace, 1826/1995).  Laplace, nonetheless, knew this proposition to be unobtainable 

and along with Cardano, de Fermat, Pascal, Bernoulli, Gauss, and others, helped create 

the early foundation for a probability theory in order to surmise an uncertain and 

incomplete dataset for the universe, albeit, with a penchant for more successful gambling 

(Hacking, 1999).  Kolmogorov would axiomatize probability theory later in the early 20th 

century (Charpentier, Lesne, & Nikolski, 2007).  Formal statistical science which utilized 

probabilistic models to endeavor to estimate, predict, model, and control phenomena 

would develop during this same period from the experimental and theoretical works of 

Fisher, Pearson, Box, and others (Salsburg, 2001).  
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Along with this shift in modeling came the extraordinary works of the non-

Euclidean geometers, Minkowski (1907/1915), Lobachevski (1914), Bolyai (1831), and 

Riemann (1868), paving the way for Einstein’s formulation of general relativity 

(Einstein, 1916).  Topologists would follow geometers in describing invariant spaces – 

tools for describing the dynamics and morphogenesis of objects without regards to 

location in the universe.  This mindset set the stage for the spacetime geometric theories 

of relativity and the robust structure of quantum probability, which along with Darwinian 

evolution, were the three most important paradigm shifts in science in the last two 

centuries.  It would therefore be appropriate to address their respective usage in any 

unified theory of organization.   

These mammoth shifts in scientific thinking collectively paved the way for the 

arrival of new frameworks for viewing and describing uncertainty in nature and human 

interpretation.  Quantum mechanics postulated that uncertainty was part and parcel to the 

fabric of the universe itself.  Einstein, as one of the three founders of quantum mechanics 

refused to believe in the indeterminacy of the universe most ostensibly through his 

famous original comment,  “I, at any rate, am convinced that He does not throw dice” 

(Einstein, 1926, p. 91).  Furthermore, Einstein tried to prove the determinancy of QM 

through a gedankenexperiment, the Einstein, Podolsky, Rosen (EPR) paradox, in which 

two quanta correlate only at superluminal speed, a direct refutation of special relativity 

(Einstein, Podolsky, & Rosen, 1935).  Einstein’s principle of locality in general relativity 

and realist approach to physics prevented a full acception of QM, though this was loosen 
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somewhat during those last years endeavoring to develop the foundation for a grand 

unification theory (GUT).   

It was Bohm who would rekindle this belief in a development of a general 

nonlocal hidden variables theory called quantum potential in which the equations of 

quantum mechanics were reformulated to display a deterministic relationship (Bohm & 

Hiley, 1993).  Bell’s theorem and inequality posited that a local version of Hidden 

Variables was all but impossible in describing a quantum mechanical world.  Aspect and 

others showed by experiment that local hidden variables were essentially impossible, but 

did not rule out nonlocal versions (Bell, 1964).  ‘t Hooft (2007) later posited the notion of 

superdeterminism in which the universe “knows” a-priori, all information at all times and 

hence is in no need of superluminal communication for all nonlocal correlations.  

Nonetheless, the predominant view of QM is probabilistic, especially since a probabilistic 

generalization to nonlocal hidden variables theories can be formulated.  Correlations 

between widely distanced quanta are possible (supercorrelations), while superluminal 

information transfer between the two is not.  This was a new kind of information 

causality and a generalization to the notion of “no-signaling” theories of physics 

(Pawlowski, et al., 2009). No-signaling simply means that a meaningful signal or parcel 

of information cannot be transmitted at greater than light speeds. 

Analogous to the indeterminism of standard quantum mechanics was the notion of 

the second law of thermodynamics in statistical mechanics: Energy is conserved, remains 

constant in a closed environment.  Heat and temperature were then axiomatized to relate 

to molecular movement and location in the form of Maxwell’s demon, as further 
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developed and discussed by Maxwell (2001) and Carnot (1897).  Boltzmann (1909) 

would form the basis for the thermodynamic definition of entropy—the movement of 

heated gas (molecular density) as a probabilistic notion, eventually leading to the famous 

entropy law logS K W= where S is entropy, W is the probability of movement, and K is 

the Boltzmann constant.  The idea of a thermodynamic entropic property as a measure of 

information was advanced by Szilárd (1929) and later by Brillouin (1959) and expanded 

to computation by Landauer (Plenio & Vitelli (2001)).  Finally, entropic information was 

thrown into the realm of the quantum and later matured through the usage of properties of 

quanta such as entanglement and decoherence for quantum computation by Bennett & 

Wiesner (1992), Zurek (2003,2009), and Wootters & Zurek (2009).  The discovery of the 

computational properties of quanta also elevated the role of the observer as a causal agent 

in the measureability of information.   

Briefly returning to what would become the seminal motivating idea of 

information transfer, Maxwell’s demon, these theoretical entities are capable of sifting 

through the energy and information measurement of every molecule in a closed container 

and hence of being able to order them into two subchambers, one consisting of the 

slowest moving particles and the other consisting of the fastest moving particles.  

Maxwell’s demon would then be able to optimally separate Boltzmann entropic 

subgroups of the original set of particles, entropy being the notion of the possible number 

of microstates that can give rise to the resultant macrostate as in temperature or total 

energy of the particle groups.  It would then be able to convert heat and energy at will.  It 

would turn out that the important process was not conservation and/or conversion of heat 
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or energy, but of storage of old information about the state of energy, the forgetting part.  

Macrostates are gardered at the expense of losing microstate information.  Hence how 

one would store and interprete this information is more important, again an observer-

dependent phenomena.  Quantum mechanics is a probabilistic microtheory, while 

thermodynamics is a probabilistic mesoscopic theory, both observer-relevant processes. 

General relativity (GR) shows that space and time are part of the same coordinate 

system and hence time could be disparate and not neatly ordered in the topology of 

regions.  Hence GR is a macro theory in the scheme of anthropoids and once again as 

with QM and Thermodynamics, observer-relevant.  In all three paradigms, observers take 

center stage and are mainly probabilistic in interpretation, given that Bohmian Mechanics 

and nonlocal QM theories can be generalized to degenerate probabilistic versions.  In this 

dissertation, the commonality between these models is the notion of information and its 

form in their respective development.  Information is thus first treated as observer 

relevant and second as the primary source for the creation of matter and energy in quanta.  

Secondly, the information model posited in this dissertation, the info-holarchy, based on 

these three paradigms, and generalized for nonclassical logics, is used to develop a 

calculus for building general organization, including natural and man-made cohorts of 

organization. 

These new maths and physical theories propagated into the depths of all sciences 

including biology and the social sciences.  Strict reductionism was to be supplanted by 

the holism of quantum uncertainty and relativistic geometry.  Subsequent to these 

changes the age of electronics erupted, creating the field of information theory, control 
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theory, and automata as born out by Shannon (1948), Weiner (1948), and von Neumann 

(1966), creating frameworks for the mathematical formulation of information in objective 

communications, cybernetics, and intelligent computation respectively.  Others were 

more concerned with the interpretation of signals.  Any creditable and complete theory of 

information would have to include not only a study of signal content and bandwidth, but 

also of observer interpretation.  A quantum theory of information would bear this 

proposition out.  

Adjacent to this mathematical information movement, a physical spacetime theory 

would give life to the notion that information could be shaped in part by a geometric 

field.  Field theories hold quantum, electromagnetic, string, and dbranes accountable for 

ensemble flows.  If information is created by a physical event, an information ensemble 

should be described by a complementary information field.  This statement begs the 

ultimate question concerning information: Does a physical presence emanate information 

or does information create physical observables?  The conventional wisdom is that of the 

former.  However, a new wave of theorists has conjectured about and worked towards the 

development of a theory of an informationally discrete universe—digital physics.   

Wheeler (1990) was the most influential initiator of the digital physics movement, 

and coined along with other famous physics terminology, the prophetic term,  “it from 

bit”.  This mantra led to the general thesis of approaching physics from an information-

theoretic point of view. Even before this development, Feynman (1982) had proposed the 

notion of a digital universal quantum simulator as a Turing machine (i.e., a quantum 

computer). Disciples of both Wheeler and Feynman, along with others followed suit by 
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forming ideas about the physical importance of information-theoretic concepts in the 

various major models of reality, including thermodynamics, super string/m theory, loop 

quantum gravity, general relativity and cosmology, and natural philosophy (Bekenstein, 

1973; Cliche & Kempf, 2009; Deutsch, 1985; Duff, 2010; Fredkin, 2000; Lloyd, 1996: 

Terno, 2006; Vedral, 2010; Von Baeyer, 2001, 2004; Zizzi, 2005b).  Their general 

premise is that at the quantum and subquantum levels approaching the Planck scale, and 

extending to the large-scale cosmos, every aspect of energy-mass depends on 

information, its generation, transfer, reception, and utilization.   

In particular, a qubit, the quantum extension of an information bit, could represent 

any aspect of a quanta, such as its spin. Multidimensional arrays of qubits could then 

represent any cosmological object, most notably, the surface of a black hole horizon 

which contains the projection of all information contained in the volume of that 

cosmological entity. This information-theoretic notion is the so-called holographic 

principle (Bekenstein, 2003; Schumacher, 1995).  It can be generalized to any object 

(Bousso, 2002).  The natural extension of this idea was to describe the universe and all its 

processes as a special, the special computation machine (Deutsch, 1997; Lloyd, 2006a).  

One of the most radical extensions of information as a model for the universe was put 

forth by Tegmark (2007) in his theory of the universe as a mathematical machine – the 

universe is equivalent to all of mathematics, discovered and constructed (i.e.,  a 

mathematical universe). 

One of the most intriguing areas of study in the complexity sciences is that of 

emergent behavior that presents itself in complex multiagent systems.  Emergence is a 
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sister concept to that of information.  As with the use of the word information, emergence 

similarly defies a singular and clear definition.  They are, as it were, concomitant and 

intertwined concepts.  Combining the processes of information and emergence, 

organisms and complex organizations exhibit collective emergent information flows and 

self-creation.  Complex adaptive multiagent systems (CAMSs) are ubiquitous examples 

of these types of mass organization.  While escaping a simple definition, fundamentally, a 

CAMS is a large network of reasoning autonomous entities (agents) that collaborate with 

each other (or with subsets of neighbors) and with a containing environment (containers) 

using rules of engagement while manifesting emergent group behavior not explicitly 

possible from individual members or smaller subgroups thereof (Amaral & Ottino, 2004).   

Emergence may be exhibited at different scales or levels of a system in varying 

ways and in time-dependent fashions (i.e., dynamically).  Through these rules of 

engagement, groups of agents may show the characteristics of self-awareness, self-

organization, self-creation, and acquired intelligence.  Reasoning is approximated and 

iteratively improved by utilizing these algorithms.  This definition does not preclude the 

possibility that meaningful subgroups of agents within a CAMS, also exhibit the 

emergent behavior from self-similarity.  Indeed, it is worthwhile to investigate these 

substructures of CAMSs that are themselves CAMSs.  Holonic structures or holarchies, 

pseudo-heirarchical networks of holons, succinctly describe this type of nested self-

similar complexity.  

The holon was a term first coined by Koestler (1967/1990) to describe an entity 

that simultaneously possesses the properties of wholeness and partness of other similar 
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but possibly heterogeneous structures of entities.  This description of a holon has the 

flavor of self-similarity in organizations and networks.  Koestler also suggested that 

holons are capable of self-creation through an evolution of processes.  Structures that are 

comprised of holons as interconnected complex adaptive agents are called holarchies.  

One may then impart intelligence to these structures by attaching rules of engagement 

through the exchange of and reflection upon information.  These organisms will be 

labeled as intelligent holarchies.  By imposing an information field theory and 

information particle model - the informaton, upon these intelligent holonic organisms 

through the use of nonclassical physical theories and logic systems, one begins to arrive 

at the notion of info-holarchies in this study.  

Invariably CAMSs are artificially glued together in a premeditative weave using 

apriori rules of engagement and reflection.  This rule set or decision space is described 

microscopically between holons or agents, macroscopically between larger homogenous 

groups, and mesoscopically, in a bridge between these scales by control processes.  For 

example, in the formation of coalitions, a subclass of holarchies that have degrees of self-

centeredness and isolation, game theoretic structures are imposed in order to shape group 

dynamics and form (Ray, 2007).  Smaller subcoalitions may exhibit self-awareness and 

eventually break out through evolutionary processes.  In the meantime, these 

subcoalitions are held together to keep the large coalition in place through a binding 

entropic rule.  In the quagmire in between these events is the mesoscopic bonding 

between potential renegades and team players.  What all these scales of dynamics have in 

common is the exchange of information within and outside of each boundary.  
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Information is created, shared, changed, or isolated.  This information dynamic is the 

central tenant of the metamodel process of this study.  In this study, a novel model for 

information will be presented that utilizes information fields (a generalization of 

Bayesian statistical field theory) in the tradition of physical fields and a dynamic 

evolutional model for information particles.  This metamodel will be the basis for a 

calculus of info-holarchies.   

Info-holarchies may span vast spacetime regions or the smallest of known abstract 

particles.  As such, they are subject to both relativistic and quantum effects.  The theory 

of quantum gravity (QG) endeavors to melt these two physical paradigms.  However, no 

mathematical framework for QG has been validated such as those of loop quantum 

gravity (LQG), string (superstring) m-theory, algebraic and Euclidean quantum theories, 

Penrose’s twistor theory, and Lisi’s E8 model to name some currently popular conceptual 

frameworks (Halvorson & Mueger, 2006; Lisi, 2007; Penrose, 1967; Rovelli, 2008; 

Witten, 1998).   

One of the most profound problems to this unification is the idea of a theory of 

uncertainty, such as that in quantum mechanics (QM),  that respects an invariance of 

time, such as in general relativity (GR).  The consensus of physicists is that any 

creditable unification theory must embrace both QM and GR (Woodard, 2009).  The 

present limitation of experimental proof of the full correctness of any quantum gravity 

theory notwithstanding, the notion of relativistic gravitational effects at quantum Planck 

scales is one of the cornerstones of LQG and any quantum gravity theory.   
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To the point of the role of information in these physical theories, recently, an 

information-theoretic model in physics, the holographic principle, that reduces the 

theoretical amount of information necessary to completely represent a volume of matter 

in the universe to a proportional amount on its surface area, was used to show from first 

principles how information forms the classical Newtonian gravitation laws, GR, and a 

possible plausible explanation for the density of dark energy—so called entropic 

(information-based) gravity (Verlinde, 2010).  Quantum mechanics is already an 

information-theoretic model.  Hence, information is treated as a unifier for quantum 

gravity theory and generalized organization in this study.  Every force (field carrier) is 

assumed by most theoreticians, to move particles of some sort, including gravity which is 

posited to move gravitons – theoretical spin-2 massless particles (Misner, Thorne, & 

Wheeler, 1973). Consistent with this construct, in this study, abstract information 

particles – informatons, are constructed for the purposes of acting as fundamental and 

simultaneous physical carriers and receivers of information that a field (the information 

field) move.  This fundamental scheme for information particle-field spacetime is posited 

to construct all information for physical particles and fields and to be the conduit for 

information creation and organization. 

The causaloid is a novel abstract mathematical mechanism that attempts to 

generalize probabilistic physical theories for QG or any causal-probabilistic notion of 

spacetime.  In this notion, an operational definition of physicalism reduces the space of 

probabilistic representations of spacetime to smaller spaces of linear operators that 

overcome the prospect of an indefinite correlational or causal ordering through time 
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(Hardy, 2008).  Quantum mechanics requires a causal time ordering via the quantum state 

relationship in the Schrödinger wave equation using an observable unitary operator, U: 

 ( ) ( ) (0)t U tψ ψ=  (2.1) 

General relativity (GR), on the other hand, requires a deterministic structure 

without a possible temporal ordering.  Additionally, GR shapes a time surrogate through 

geometry.  Statistical thermodynamics has a role in a new concept that replaces our 

conventional definition of time with state independent thermal flow in a relativistic 

notion of geometric spacetime horizons around the observer (Connes & Rovelli, 2008).  

Horizons are the theoretical limits of what an observer could causally affect within 

luminal constraints.  Time may therefore be created from or replaced by the geometry 

and topology of the universe and the thermal flow sensed by an observer connected to 

that structure - the shape of things around us and their temperature.  Information is no 

exception to this paradigm being thermodynamic and entropic.  Could information and 

information flow replace time’s arrow?  

Any complete theory of information must subsume the physical theories of 

quantum mechanics, general relativity, and eventually that of a viable theory of quantum 

gravity (QG) in order to have a chance at conciliation with energy-matter.  The field of 

QG endeavors to consistently unify the linear probabilistic principles of quantum 

mechanics at microlevels with the deterministic, but nonlinear principles of GR at 

macrolevels.  In the reduction of the Schrӧdinger wave function, the microlevel fine-

grained dynamics may then decohere from chains of successively more deterministic and 

less probabilistic models (their probability distributions become less uniform) in order to 
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reduce to the course-grained deterministic macrolevel results.  Mesoscopic 

thermodynamical levels may be transitional between these two regimes.  This notion of 

wave reduction that attempts to reconcile the quantum-ness of the very small to the 

determinism of the large, is a variant of the decoherence formalism of Gell-Mann and 

Hartle’s modified version of Everett’s Many Worlds model of simultaneously existing 

histories adapted to quantum gravity (Gell-Mann & Hartle, 1994; Omnes, 2005; 

Siegfried, 2010).  The various attempts at QG must also contend with quantum 

entanglement—a super-correlative concept of causality in which two (or more) entities 

(particles) when separated, can exactly determine the other’s properties upon their 

respective measuremen (i.e., only one measurement of one particle’s properties is needed 

to have a measurement of the multiparticle system’s properties, regardless of the 

separating distances).   

If quanta (generalized particles) are pure information, as this study posits, then 

this conciliation from a quantum gravity theory must come to fruition.  An effective 

information field theory and information particle model that neither requires determinism 

or definite causal ordering may describe the informational flow in a QG setting.  This 

framework qualifies as a general information flow model that promulgates at both the 

quantum and general relativistic scales.  In this dissertation, a field theory will be 

developed that complements a new particle model for information, the informaton, which 

consists of an event generator-observer pair exhibiting both quantum behavior and 

spacetime indefiniteness and invariance in general relativity.   
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With this goal in mind, causaloids—a generalized probabilistic-casual framework 

for plausible physical spacetimes (i.e., event-horizon regions), were utilized in forming 

the causality mechanism in this study’s information models (Hardy, 2005).  The notion of 

a generalized theory of uncertainty (GTU), Zadeh (2005), which can generate more 

expressive uncertainty operators, replace traditional probability operators in quantum 

state calculations in the original causaloid framework.  GTU operators will make it 

possible to substitute other notions of uncertainty into the quantum state definition.  In 

this sense, quantum probability is generalized in this study.  In a similar manner, an 

uncertainty operator will be utilized in the macroprocess operators that will be bridged to 

the microprocesses of each informaton.  The mechanism to be used to delivery this 

bridged concept is from the field of macroinfodynamics.   

Macroinfodynamics is an approach to model and bridge stochastic macro and 

microprocesses through control functions (Lerner, 2003).  In this study’s approach, 

macroinfodynamics are generalized for the case described by GTU operator Itȏ stochastic 

diffusion equations which are posited to dictate informaton exchanges at the micro level, 

while generalized Shannon entropy measures blend in (ensemble average) the macro 

behavior of the formed large-scale structures. Control-theoretic (mesoscopic scaled) 

functions bridge these two levels in the scale boundary between the microscopic and 

macroscopic regimes.  The concept of a statistical description (filtering) of turbulence, a 

phenomena that manifests itself in the indeterminate definition of turbulence in the 

nontrivial boundary between micro scaled air molecules and macro scaled air flow 

currents, serves as an analogy for this process (Majda, Harlim, & Gershgorin, 2010).  
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Information is posited, in this study, to be a flow emanating and generated from all scales 

relative to the source (event generator) and receiver (observer). 

Uncertainty in information has been described in many ways including (a) 

probabilistic, (b) veristic, (c) belief, (d) fuzzy, (e) bimodal, (f) group, and (g) usuality.  

This notion of generalizing uncertainty concepts has been developed by Zadeh (2005) in 

an attempt to unify them into a single framework—the generalized theory of uncertainty 

(GTU).  Central to this endeavor is the idea of a generalized constraint variable given by 

the form: ( )X is r R where X is a constrained variable, r is an index symbol that represents 

the semantics of the constraint, and R is a nonbivalent relationship.  Associated with a 

generalized constraint will be a test-score function, ( )ts u , that measures the degree of the 

object u satisfying the constraint.  This definition of a general constraint for uncertainty is 

a generalization of the idea of the membership function in fuzzy logic.  Generalized 

constraints will be expanded upon in more detail in chapters 2 and 4 of this study.   

Quantum uncertainty as pertains to the condition implied by Heisenberg is a 

specialization of a probabilistic measure of uncertainty since quantum states are 

described as linear combinations (superpositions) of probability distributions of possible 

particle paths (histories).   

Generalizations to Shannon entropy, von Neumann (1955) quantum entropy, and 

thermodynamic descriptions of information have been formed, most notably the α-Renyi 

entropy family (Hu & Ye, 2006; Rényi, 1961): 

 
1( ) (1 ) log ( )S Tr

α
α ρ α ρ−= −  (2.2) 

which converges in the limit, 1α +→  to the von Neumann entropy,  
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 ( ) ( ) logS Trρ ρ ρ= −  (2.3) 

Here ρ  is the probability density operator (matrix) for the quantum system.  These 

definitions of information entropy depend on a probabilistic notion of particle 

distribution. The most general forms of quantum and general uncertainty entropies will 

be given and developed in chapter 2 and 4. 

Generalizing this probability density operator utilizing the GTU further enhances 

a description for information flow (i.e., an agenda for generalized information entropy).  

However, these entropic measures do not consider the symbiotic nature of information - 

the syntactic, semantic, and pragmatic dimensions.  Symbiotics is a general theory of 

information representation in terms of signs and symbols (tokens).  Syntax is the 

relational nature between such symbols or tokens.  Semantics is the study of the 

interpretive space that a receiving agent has of observed information.  Formally, 

Korzybski (1994) developed general semantics as a means of differentiating human 

expressiveness of observation and reality.  His work most famously expanded the 

universality of the “to be” verb of any expression and the reality behind the condition of 

the described object.  Finally, pragmatics is the study of the action space of possible 

repercussions of these interpretations (Joslyn, 2002).  Symbiotics contributes to a more 

appropriate and powerful definition of information that expands its application to human 

cognition and general intelligent interpretation. 

While the ubiquitous term information is used in a flippant manner to mean a 

general relevancy of data and knowledge propagation and retrieval, the apparatus for its 

structure and flow between event and observer is ambiguous.  The measurement problem 
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in Quantum Mechanics points to this uncertainty in what information can be objectively 

measured and indeed if the collapse of a generalized Schrödinger wave equation dictates 

such measurement or is done separately by nature (Thaheld, 2007).  Everett (1957) and 

his many-worlds interpretation of quantum mechanics posits otherwise. 

In the many-worlds interpretation of quantum mechanics, parallel universes exist 

simultaneously.  Each universe assumes a uniquely different history.  No collapse of the 

wave equation ensues because every known particle is in one such universe and hence, all 

conceivable histories exist (Everett, 1957; Tegmark, 2003).  From an information-

theoretic viewpoint, all potential information exists.  If each possible particle state exists 

in this parallel scenario, then each possible information state exists.  Information has been 

theorized to propagate from physical systems alone.  In other words, no information 

exists without a physical phenomenon.  An earlier attempt at formulating an information 

field theory based on classical field techniques assumed this very reductionist approach 

(Enßlin, Frommert, & Kitaura, 2008).   

Quantum mechanics further supplements this condition by implying that no 

information may exist if both an observer and a physical event do not exist.  Here 

information will be introduced as an epiphenomenon.  Information in the form of abstract 

particles that each consist of an observer and event-generator entity pair will be 

constructed.  It will be hypothesized that abstract subquark particles such as the helon and 

preon models can be represented by these information particle systems.  Helons and 

preons are theorized topologically defined subcomponents of quarks, leptons, gauge 



 

 

19

bosons, and fermions and hence of most physical particles in the standard model (Bilson-

Thompson, 2008).  These information particles will be called informatons.   

In the tradition of physical field-theoretic methods, a new generalized information 

field theory will be constructed utilizing the structure of the informaton and its holonic 

nature in building organization clusters, the things of organized energy-matter.  These 

clusters will then be used to construct classes of complex organization, the complex 

adaptive multiagent system (CAMS) and its holonic cousin, the holonic multiagent 

system (HMAS).  Next, the info-holarchy, a novel synthesis of these organization types 

via the proposed informaton model will be constructed. The abstract mathematical 

structure of such informaton-based holonic systems will be investigated utilizing the new 

generalized information field theory, the informaton particle model, and their descriptions 

using topoi, a category-theoretic mathematical structure that generalizes the notions of 

set-points, metrics, topologies, and geometries.   

In this way, a very general physico-mathematical information framework will be 

developed that takes into account the most promising of proposed unification theories, 

i.e., theories of everything (TOE), such as quantum gravity in the form of loop quantum 

gravity (LQG) and related field theories. LQG was founded in principle by Asketar and 

expanded quickly as a bonafide theoretical formulation of quantum gravity and a 

unification of general relativity and quantum mechanics (Ashtekar, 1986, 1987; Rovelli, 

2008).  LQG posits that spacetime consists of a connected network of spinfoams that are 

of themselves topological structures that are consistent with physical measurements of 

particles and forces.  LQG is preferred to other unification models because it has a 
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cleaner and more simplified topological structure and is background independent – a 

crucial pre-requisite for physical unification frameworks (Markopoulou, 2007).  In this 

study, information is conjectured to follow LQG in a special way by utilizing evolutional 

microscopic, macroscopic, and bridging mesoscopic metamodels of GTU processes that 

generalize Itȏ processes—generalized info-dynamics.  Furthermore, utilizing the 

proposed informaton model, information manifests physical entities (i.e., the universe is a 

complex holarchical network of information particles interacting in a manner consistent 

with LQG and a generalized physical probability framework—GTU causaloids).  This 

proposal will then have implications for a new paradigm of information-laden 

organizations (e.g., a general organization that is codependent on information technology 

is simply a special version of a holarchical network of informatons—the prototypical 

info-holarchy). 

While the info-holarchy model is utilized in this study to represent the evolutional 

dynamics and morphology of complex adaptive multiagent systems (e. g., CAMs) its 

application will be be steered to frame general inference machines, particularly 

mammalian neuronal dynamics and to complex business organizations leading to a novel 

visualization of their evolutional development—holographic, multisenory performance 

dashboard-caves.  The concept of a cave is described by a 3-D immersive visualization 

utilizing multi-sensorial apparatus for feedback and control.  The content of this 

visualization is a class of evolutional patterns of the organization that subsume ordinary 

analytical devices such as graphs, tables, and classical statistical methodologies.  Finally, 

the info-holarchy is grounded on first principles of information emanating from particle 
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and large-scale cosmological physics, complexity, and evolutional studies—lending 

credence to the physical nature of information in forming general organization.  

Information, as is purported in this study, is not a second cousin to energy-matter in the 

nature of things organized, but is a first-order building block of reality. 

Problem Statement 

The problem researched in this study was the inadequate, indirect, and incomplete 

manner in which classical organization information paradigms through the use of 

business analytics and intelligence applications attempt to model the evolution of 

organizations.  This shortcoming is based on the overarching and simplified assumptions 

made by business analytics and the classical statistical and optimization approaches used 

in such paradigms.  Davenport, Harris and Morison (2010) point to several situations 

which business analytics and hence classical business intelligence systems do not address 

or mislead.  Among them are (1) real-time analysis, (2) small probability events, 

otherwise known as long-tail events, (3) past history models which mislead, so-called 

black swan events ( Taleb, 2007), (4) classical statistical and causal algorithms, along 

with pseudo-dynamic analysis from neural network or other architecture building 

modelers do not adequately handle human decision-making heuristics, and (5) variables 

that are in some analytic models unmeasurable.  Moreover, results from such business 

analysis are oftentimes not causally connected to business phenomena in an accurate, 

adaptive, and timely manner (Adrian, 2009).   

More philosophically, the clash of cultures between the paradigms of classical 

statistical and optimization methodologies and algorithm learning/simulation-based 
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research has prompted the question of why predictive modeling is, at best, a learned 

phenomenon, regardless of the amount of prior history and Bayesian analysis applied to a 

situation (Breiman, 2001).  This study purports to go one step further in eliminating 

classical prediction methodology, instead invoking “evolution patternization” through 

information dynamics as a superior means of prognostication.  Evolution patternization is 

a methodology of visualizing real-time patterns of behavior through the dynamic flow of 

information in different scales and levels in an organization in order to make an inference 

on its characteristic profile. The morphology of a pattern life of an organization replaces 

the folly of gleaming from a statistical profile based on overly restrictive assumptions and 

misleading model paradigms.  Algorithmic (machine) learning helps in this quest, but 

concentrates instead on singular characteristics of an organization.  This study endeavors 

to capture an abstract approach to the visualization of evolution of organizations, not 

merely a single or limited thread of activities. 

Parallel to this development is the way in which information is treated informally 

in such theories.  Information is handled as a secondhand characteristic not based on first 

principles of physics.  Specifically, state-space models based on classical physics do not 

explain emergent behavior in organisms whose dynamicism may be nonlinear, chaotic, 

quantum-entangled, or have nonclassical probabilistic behavior such as higher order 

fuzziness or unknown adaptive mechanisms.  Information will be treated as a first 

principle in this methodology.  This proposal will be established by constructing a 

general information-theoretic metamodel for matter and processes based on ideas from 

contemporary physics, complexity studies, and network and organization theories, and 
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represented through topos theory, a set-theoretic generalization from mathematical 

category theory—a metamathematical framework. Information represents the life-blood 

of any material in the universe.  Its dynamicism is the most important process in forming 

matter and organisms on all scales.  To this effect, the physics of business organizations 

endeavors to introduce rigorous and emergent physical models to better patternize 

business organization.  It involves the abstraction of physical theories applied to the 

processes and structures of business organizations.  Business objects are viewed as 

organisms with adaptive life cycles that follow fundamental emergent laws inherent in 

our best physical theories.   

No longer may classical theories of organization and management that utilize 

statistical modeling and nonadaptive processes adequately describe business realism.  

Additionally, Newtonian mechanics serving as the paradigm for command-and-control 

type organization dynamics extrapolated from the Industrial Age to the Information Age, 

severely limits the current business-sphere in ecological, societal, and technical ways 

(Engdahl, 2005).  This classical business paradigm is no longer self-sustaining nor is it 

appropriate for the highly adaptive and complex nature of the noӧsphere—the collective 

conscious and intellect of humankind (de Chardin, 2008; Vernadsky, 1945).  As the 

major dynamical structural tool developed in this study, holarchies are sets of self-similar 

whole-part holon nodes that form practical networks for adaptive organizations (Koestler, 

1967/1990).  These are antithetical to hierarchies. When these holons are endowed with 

complexity, adaptability, reasoning, and self-awareness they take on the characteristics of 

CAMSs, thus serving as prototypical computational complex organisms.  Other instances 
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include computational devices, social constructions, cosmological components, and 

subatomic particle systems.   

Unfortunately, CAMSs and their holonic flavors, holonic multiagent adaptive 

systems (HMASs) are difficult to model and predict with.  They are more adequately 

used as patternizers of organizations.  Nonetheless, HMASs and CAMSs hold the 

promise of adequately representing the dynamics, phenotype, and morphology of natural 

systems.  Information systems theories (ISTs) portend to model information flow in 

simple systems such as finite feedback discrete networks with minimal exogenous time-

dependent input.  However, a more general emergent model of IST adapting general 

uncertainty features such as quantum, fuzzy, probabilistic, beliefs, and evolutional 

processes may better serve to represent CAMSs and natural complex adaptive systems 

(Snooks, 2008).  The lack of a comprehensive and unified physical model of information 

makes the task of constructing complex systems based on microscopic information-based 

processes difficult and disconnected.  In addition, a-priori macroscopic processes such as 

rule-based game theoretic dynamics are imposed on CAMSs without regard to any 

natural evolutionary microprocess or mesoscopic bridge between and within agent 

entities. 

To this end, a hybrid research methodology will be applied to this study as a 

means of constructing the abstract metamodel for an information-based organization 

theory.  This methodology focuses on finding generalizations to currently researched and 

sometimes universally accepted paradigms in abstract mathematics and mathematical 

physical theories and not on data per se (Brown & Porter, 2004).  Rather than form 
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models from data, as is done in traditional social science grounded theory, this hybrid 

method, rooted more in mathematical research as generalization and induction, is based 

on constructing general patterns from prior theories of modeling, then building more 

powerful metaphors and metamodels, rather than apriori, presenting a model and then 

testing it against data generated from sampling.  In this study, these generalizations are 

manifested by a metamodel of information dynamics based on first principles of physics 

and computation.   

The methodology applied in this study is a variant on a pseudo-qualitative 

approach to abstract mathematical modeling.  Abstractions are based on general patterns 

of process and structure and their evolution. Patterns of behavior of matter and structure 

in organization are the central issue, not the mostly mistaken and abused methods of 

quantitative modeling and prediction that fall short of consistently bringing forth a better 

understanding of the process and properties of emergence and the evolution of 

organization from information dynamics. Business analytics which are dependent on 

classical statistical methodologies of causal/explanatory and 

correlation/prediction/control do not address nonlinear dynamics (which include 

deterministic and stochastic chaos), evolutional behavior, self-organization, and other 

emergent phenomena.  In this study, real-time organization pattern analysis, through the 

use of novel nonclassical information-theoretic notions, replace these mindsets. 

Purpose Statement 

The purpose of this research was to contribute to a three-fold goal that addressed 

the incompleteness of classical organization theories to universally model organization 
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information dynamics. This goal consists of (a) developing a robust physical theory of 

information based on a novel concept of information field and particle, the informaton, 

akin to physical field theories (Kaku, 1999; Weinberg, 2005 ), (b) modeling the structure 

of prototypical organizations as complex emergent intelligent organisms technically 

defined as intelligent holonic multiagent holon systems (HMASs) structured over a 

generalized probability and causal manifold—the causaloid model Hardy (2008), and (c) 

developing an information theory based on a (1) leading background independent 

(spacetime not assumed to be fixed in order to resolve ultra-violet divergence) unified 

physical theory—loop quantum gravity Rovelli (2008), and (2) a general theory of 

uncertainty (GTU) which generalizes quantum, fuzzy, and classical and nonclassical 

probabilities Zadeh (2005).   

Additionally, microscopic general uncertainty Itô processes, models, and games 

and generalized entropy macroscopic processes with binding mesoscopic control 

functions will be developed to describe the evolution of holarchical systems.  This triad 

of connected and differently scaled processes defines an extension to the concept of info-

macrodynamics which utilizes variational principles—minimizing energy from 

uncertainty in observations and maximizing entropy to dynamically define system 

constraints that shape the organization of entites in that system (Lerner, 2004).  Prototype 

adaptive holarchies as holonic multiagent systems (HMASs) were abstractly modeled.  In 

this way, a more powerful method for constructing a programmable structure that 

describes the general patterns of behavior and dynamics of organization can be 



 

 

27

implemented.  This metamodel will be fundamental in overcoming the inadequacy of 

static or classically dynamic models that purport to predict and model phenomena. 

Nature of the Study 

This study employed a hybrid grounded theory methodology for presenting a new 

variant on abstract mathematical information and organization theories.  Grounded in this 

context means constructing abstract theories of metamodels based on prior well formed 

and tested theories, not on data.  Classical techniques as done in quantitative analysis for 

prediction and modeling will not be used because they are woefully inadeqauate for 

gleaming the holistic patterns appearing in nature and in human-inspired constructs. 

Dynamic models for information flow within an organization will be proposed based on 

well known classical and nonclassical paradigms such as quantum mechanics, general 

relativity, quantum gravity, complexity, emergence, dynamic and general systems 

theories, network theory, organization theory, game theory, and uncertainty frameworks 

such as general fuzzy, intuitionistic, and other nonAristotelian logics.   

These models will then be synthesized to construct a proposal for universal 

information dynamics in general organizations.  Abstract metamodels generalized from 

these approaches to information dynamics and organization were constructed to emulate 

natural and man-made systems.  Rather than measuring the accuracy of these 

representations, general patterns will be compared, as in higher order mathematics 

(Brown & Porter, 2004).  The abstraction of important patterns of organization and 

information dynamics will be held to be more important and applicable to constructing an 

information-theoretic based metamodel for matter and organization than quantitative 
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studies which are limited in their scope because of the use of apriori model assumptions. 

In this study no static models were assumed for human organizations such as business 

entities. 

Dynamic abstract structures are to be constructed based on the informational 

framework build from the premise of a generalized information theory and the 

informaton model of this research study.  It will be proposed that complex adaptive 

systems which are holonic in structure, otherwise known as HMASs, will be created, 

evolve, and terminate based on the general information model and dynamic 

aforementioned.  Theory-based simulations dependent on these mathematical models 

may be designed in followup studies which will attempt to mimick inference machines, 

particularly, the structural form of brains and of a general organization information flow 

via a holographic dashboard-cave as proposed in this study.  Patterns of behavior from 

such simulations may then be compared to their real world physical analogies.  

Additionly, it is the intent of this study to design information dashboards that will aid in 

the visualization of such simulation and phenomena comparisons.  Such comparisons will 

include spacetime historicities of these differences.  At each spacetime coordinate, a 

divergence measured the difference between a generated observable from the simulation 

and its real system counterpart.  Mathematical holographic representations of such system 

observables served as a framework for these immersive visual dashboard presentations.   

Research Questions and Hypotheses 

The major construct of this study is the conceptualization of a new information 

calculus for constructing general organization.  This calculus emanates from (a) an 
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abstract information particle (the information) and an accompanying Bayesian statistical 

field theory based on a general framework for causality (the causaloid), a unified 

quantum gravity theory for spacetime (loop quantum gravity), a generalization of 

uncertainty, holonic organizations, and high-level mathematical representations of these; 

(b) the duality and entanglement properties of the event-observer model for informatons; 

and (c) a multiscaled dynamic process mixture for a multiagent system of autonomously 

acting entities, the generalized Itȏ process defined by an info-dynamic framework.  

Current models for complex systems either macroscopically describe ensemble behavior 

or microscopically describe inter-agent dynamics, as in physical models of subatomic 

particles.  These statements beg the following research questions relevant to this study: 

1. Can the proposed metamodel of this study, the info-holarchy, adequately 

categorize evolutional patterns for general organizations? 

2. Can a mesoscopic bridge be built from this study’s metamodel that can adequately 

adjoin its macro and micro subcomponents in a realistic and verifiable manner? 

3. Can a high-level, general mathematical framework using topos theory, causaloids, 

intelligent multiagent systems, and nonclassical physical theories and logical 

systems be built as an information calculus for complex organization? 

4. Will general models constructed from such an information calculus more aptly 

describe emergent and evolutionary systems? 

5. Can information, viewed through the lens of this study’s proposals, (a) an abstract 

particle, the proposed information, (b) a generalized information field theory, and 

(c) a process model (GUT info-macrodynamics) that incorporates micro, meso, 
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and macro aspects of an organization; be elevated to the stature of energy-matter 

as a building block for nature? 

6. Can this study’s metamodel be appropriately and functionally specialized to 

inference organisms such as neural systems and to complex information business 

organizations? 

This study hypothesized that the proposed info-holarchy metamodel functionally 

described general patterns of behavior and dynamics of organisms and organizations 

based on a calculus of organization of physically inspired intelligent and self-aware 

HMASs that follow the physical rules of the very small and large worlds and of the 

mesolevel observation scale of anthropoids.  The main hypothesis of this study can more 

compactly be stated as: the info-holarchy metamodel as constructed from contemporary 

quantum gravity, general nonAristotelian logic, and uncertainty, utilizing the abstract 

representations of topos theory and generalize probability from the causaloid model more 

powerfully patternize organization evolution in an information-based universe. 

Theoretical Base 

Classical statistical methodologies and physical theories no longer can adequately 

describe the evolutionary dynamics of living organizations nor those of general material 

morphogenesis that develop from holistic multiagent groups such as cosmological 

clusters, techno-socioeconomic groups such as businesses, or the simple evolution of 

automata (Kilmann, 2001; Marion, 1999; Taleb, 2007; Wheatley, 1996, 2006; Wolfe, 

2009; Wolfram, 2002; Youngblood, 1997).  Since the inception of quantum mechanics, 

general relativity, nonlinear dynamics, evolutionary and adaptative modeling, and the 
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complexity sciences, the proverbial game of modeling the universe and life has changed 

(Laszlo, 2004).  There are now metamodels in use for more accurately describing patterns 

of development of these multiagent organizations and organisms.  The foundation for the 

info-holarchy—this study’s metamodel for patternizing organization—is taken from the 

scientific literature of chapter 2 that outlines the common properties of information from 

these new emerging sciences and investigations.  In particular, by expanding and 

generalizing the core ideas of emergent studies reviewed from the literature, this study 

develops and introduces (a) novel methods for describing the unification of GR and QM, 

in the form of an entanglement information-based loop quantum gravity, utilizing a 

general causality framework for physical theories—the causaloid, (b) forming a new 

holistic physical form of information that generates matter and organization—the 

informaton, and a comprehensive Baysian statistical field theory, and (c) from 

complexity, network, and organizational studies, a general framework for structural 

organization—the info-holarchy.   

In this study, theoretical prowess emanates from the physical theories of QM and 

GR, the sciences of complexity, the phenomena of emergence in the nonlinear dynamics 

of chaotic, adaptive, and multiagent systems; and from cutting-edge ideas from the 

fringes of post-modern stochastic and nonAristotelian logics.  Patterns of evolution that 

are postulated from these new paradigms give a sense of the more important holistic 

properties of the universe, oftentimes supplanting the details of ill-advised and narrow 

predictive modeling done through the lens of classical thinking.  The domain of business 

management guided in large part by the premises of model-predict-and-control 
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organization theories are ostensible examples of the limits of classical mechanics applied 

to ultra-complex human situations (Olsen, & Eoyang, 2001).  One need not go far to find 

important examples of systemic meltdowns emanating from unpredictable black swans, 

long-tail phenomena, positive feedback downward spirals, and bifurcations (e.g., the 

2000 dot-com bubble burst and repeat potential (Gaither & Chmielewski, 2006, July 16), 

the 2007-2009 US banking, financial, and housing collapses (Foster & Maqdoff, 2009; 

Krugman, 2009), limitations in controlling terrorism (Gottlieb, 2010), successful but 

unexplained suboptimal technology markets (Taleb, 2007), and information-overload and 

confusion caused by the ubiquity and nonuniform verifiability of the contextual world-

wide web (Lanier, 2010)).  

The info-holarchy paradigm of this study is a possible way out of the doldrum of 

control complacency and misdirected business mindsets.  Info-holarchies manifest 

intelligent informational multiagent-based simulation of organization evolution—paving 

the way to novel methods of viewing pattern dynamics and recognition.  This 

patternization dynamic replaces the control aspect of classical paradigms.  Business 

concerns the natural organization and evolution of things, more than classical business 

analytics—having a false perception of being capable of optimizing an n-sum game 

relative to one’s environment.  Business strategies—the metaprocesses of organizations, 

must not only be adaptive, but must also recognize spatio-temporal pattern gradients 

(rates of change) occurring at different scales and levels within the organization.  It is 

posited in chapters 4 and 5 that these pattern gradients and evolution of morphology of 
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organizations are more important and accurate indicators of business health than control-

centric measurements, prediction, and reaction. 

Definition of Terms 

Category theory: a branch of mathematics that generalizes the concepts of 

geometry, logic, sets, topology, and other mathematical abstractions (MacLane, 1971). 

Causaloids: a novel framework for constructing mathematical physical theories 

that incorporate indefinite causal structures (possibly ambiguous, disjointed, or 

nonexistent  temporal ordering) with a probabilistic reasoning calculus (Hardy, 2005). 

Clifford algebra: are generalizations to the algebras of complex and quaternion 

numbers—octanion algebras. They are also used as matrix algebras and act on spinors 

used extensively to represent physical spaces in quantum field theory (QFT) and string 

theories (de Traubenberg, 2005). Real Clifford algebras are associative algebras 

generated by a unit element 1 and d t s= + elements, 1,..., d
e e satisfying the relations 
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Here, Clifford algebras are used to generalize holographic representations for holonic 

objects which are to act as metaphors for information particles (see the holography term 

below). 

Complex adaptive systems (CASs): complex dynamic systems which contain large 

number of subsystems with highly adaptive characteristics and connectivity including 

some reasoning and self-organization capabilities.  They are coevolutional in behavior.  
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They were first named by Gell-Mann and Holland during their work at the Sante Fe 

Institute (Waldrop, 1992). 

Connection: given an n-dimensional manifold, S (an open subset of n� ), 

consider the tangent spaces ( )pT S at each point p S∈ .  A connection (affine), Π , is a set 

of (linear) mappings ( C
∞ in each coordinate), , : ( ) ( )p q p qT S T SΠ → that can be expressed 

as: , (( ) ) ( ) ( ) ( ) ,   1,...,i k

p q j p j q ij p k qd j nξΠ ∂ = ∂ − Γ ∂ = and { }( ) ; , , 1,...,k

ij p
i j k nΓ = are 3

n reals 

that depend on p and that are C ∞ (Amari, 1993, p.13).  Intuitively, Π  is a system that 

connects (relates) the tangent spaces of a smooth manifold in a smooth manner to each 

other.  This sets the stage for defining transport mappings that carry points from one 

tangent space to another in a smooth manner, the so-called parallel transports. 

Emergent game theory: a series of game theoretic concepts involving the 

emergent fields of quantum information, evolution, chaos, and general uncertainty.  In the 

context of this study, emergent game theory will depict a synthesis and general model of 

emergence in game theoretic processes. 

Holarchy: the organizational structure of a group of holons, which are subsystems 

that exhibit internal dependence on lower-level subsystems, but independence of higher 

level subsystems while retaining high adaptive connectivity at all levels.  This is a 

generalization of a hierarchy (Koestler, 1967/1990). 

Holons: generalization of entities that are both wholes consisting of parts (other 

holons) and parts of other wholes (holons).  The term was first coined and described by 

Koestler (1967) and has been expanded by others including most notably, Wilber (1995), 
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his collegues and critics (Edwards, 2003a, 2003b; Fisher, 1997; Meyerhoff, 2003; Smith, 

2009). 

Holography: the development of a 3-D (n-dimensional) image by superimposed 

2-D (d-dimensional, where d n< ) images taken at various points in a representation 

space.  The removal of any small number of projection subimages will not appreciably 

distort the full image.  The analogy to information fields is to represent a multiattribute 

holon, such as an informaton-based holarchy (info-holarchy), by hypercomplex numbers 

which are then compressed using the linear span of octonions (or generalized Clifford 

algebras). 

Hypercomplex numbers: a generalization of complex or real-plane number 

systems, they are represented by generalizations to complex numbers such as octonions 

which are numbers that are represented by a span of 8 complex numbers. Clifford 

algebras are higher dimensional hypercomplex numbers.  Hypercomplex numbers can be 

embedded into simpler expressions in order to compress high attribute objects. Hurwitz’s 

theorem showed a limitation to hypercomplex numbers in the sense that higher order 

hypercomplex algebras can be represented by isomorphisms to octonion or lower level 

hypercomplex algebras, i.e., octonion algebras exhibit the richest structure for 

hypercomplex numbers (Hurwitz, 1898). 

Qubit: an information container than generalizes the classical information 

Boolean bit which contains either 0 or 1, to a quantum linear and convex (combination) 

superposition of such classical values, and is expressed as (Schumacher, 1995): 

                                  1 0 ,  1,   0 , 1ϕ α β α β α β= + + = ≤ ≤                               (2.5) 
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Information field: a mathematical field equation describing the flow of 

information as a physical-like field using relevant properties of symmetry, coherence, 

invariance, and diminishing information. 

Info-macrodynamics: a mathematical framework incorporating Itȏ stochastic 

calculus to describe microstate dynamics while bridging ensembles of these microstates 

by information entropy to macrostates for controlled information flows (Lerner, 2003) 

Informaton: the concept of a unit of information to be represented in a 

mathematical information field.  This is a structured generalization of the fundamental 

computing units of bits in classical mechanics and qubits in quantum computation and 

communication. 

Manifold (topological): an n-dimensional space that is Hausdorff (open sets 

separate points), second countable (has a countable cover, i.e., a countable number of 

opens sets that cover the space), and is locally Euclidean—that is, every point has a 

neighborhood—(an open set containing it, that is homeomorphic) and is continuously 

mapped to each other bidirectionally, either to an open sphere in the n-dimensional reals 

or to the n-dimensional reals itself (Lee, 2000).  Manifolds are then generalizations of 

spaces that have a similiar topology to that of a Euclidean space.  Differential manifolds 

share differentiability features as well as topological features (diffeomorphisms) with 

Euclidean spaces. 

Planck scale: the smallest scale of energy in the universe that is consistent with 

any singular discrete movement of light-waves, rated at 1.22 × 1028 eV and 
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corresponding to its mass-energy equivalent of the Planck mass at 2.17645 × 10−8 kg.  

This scale also corresponds to a Planck time, 5.39121 × 10−44 s, the time light takes to 

travel in a vacuum of Planck length, 351.61625281  10 mPl
−= × , and its corresponding 

Planck area, 2
Pl  and volume, 3

Pl .  Theoretically, at these scales, gravitational forces are on 

par with the other forces (Baez, 1999). 

Topos: a basic abstract mathematical object representing a category of sets and 

arrows (maps) between those sets in which (a) exponentiation of an object by another is 

done by the set of maps between those two objects, (b) a subject map or classifier exists 

that maps the identity set to the universal set, (c) there exists a terminal object, one in 

which for every other object in the category, some arrow exists that maps it back to the 

terminal object, and (4) an initial object, one in which for any other object, there exists an 

arrow that maps the initial object to that object.  Topoi generalize the concept of sets and 

organization in any mathematical or computational setting (Goldblatt, 2006; MacLane & 

Moerdijk, 1992). 

Assumptions 

 The informaton particle model resembles a bipartite entangled quantum system.  

Therefore, the subcomponents in an informaton or informaton cluster are not quantum 

separable.  The observer and event subcomponents of an informaton are entangled via the 

information flow that connects them.  This dual component is the basis for constructing 

other informatons as the microlevel apparatus for HMASs.  Informatons are an 

abstraction of information flow, not seated in any known physical counterpart.  
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Nevertheless, information, as an abstraction, has been linked mathematically to 

thermodynamic flow and energy, two hallmark observables of physics.  The standard 

model (SM) of particle physics consists of a hierarchy of fundamental particles – bosons 

(forces) and fermions (mass), the latter being further reduced into quarks and leptons as 

the constituent components of matter.  The theoretical particle mass-originator Higgs 

boson is predicted to be the constructive component of all SM fundamental particles, but 

is presently not confirmed by experiments, although situated for indirect confirmation in 

near future Large Hadron Collider (LHC) experiments. 

Limitations 

 Generalized information fields are conceptual objects that describe how 

information processes may flow or be contained from one general information system to 

another and within each.  It is further based on the concept of physical fields which are 

mathematical smears or statistical estimates of ensembles of individual particles that are 

much too plentiful and complex to be described deterministically.  The smearing 

functions in physical fields are usually statistical functionals of attributes of these 

particles, such as ensemble averages or moments.  There is no physical experimental 

evidence for the detection of and existence of information fields in quantum systems.  

They are instrumentalist tools for grasping the movement of hypothetical information 

particles that are here labeled as informatons.  Informatons consist of bi-partite entangled 

systems representing the event generator and an observer.  The construction of such 

information particle systems makes it possible to visualize general quantum observer-

dependent realities as a network.  The dynamics of such bi-partite systems are then 
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motivated by microscopic stochastic processes, mesoscopic bridge ensembles and 

macroscopic classical information theory. 

Scope and Delimitations 

While the info-holarchy metamodel can be applied to any organization or 

structure that represents an organism, the abstraction of the model limits the scope of the 

study to generalized patterns of behavior and dynamics of such entities.  Detailed 

quantitative modeling or prediction of localization dynamics is not specifically addressed.  

Information organization is posited to be an emergent and evolutional process and 

structure.  Hence, the bounds of this study are reflected by the lack of local description in 

the globality of patterns of organization.  No quantitative studies were done - no 

samplings of a realized phenomenon were compared to a simulation based on the info-

holarchy metamodel.  Quantitative methodologies are unrealistic and impractical in this 

study based on the sheer volume of data that would have to be generated or collected.  

Patterns are king in this study. 

Significance of the Study 

Presently, no unified theory of information exists.  There are two opposite 

dialectic poles.  Analytic credibility comes from the Shannon era of information theory.  

In Shannon (1948), information is a measure of entropy, the amount of uncertainty that 

remains about a signal after its physical retrieval.  In this definition, an a-priori 

probability distribution is used to describe the scattering of values that a signal may 

propagate.  The classical Shannon entropy is given by: 
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1

( ) ( ) ln ( )
n

i i

i

H X p x p x
=

=∑  (2.6) 

for a finite discrete random variable X taking on possible values { }1, ... nx x with probability 

distribution function ( )p x .  If X takes on an infinite number of values, then the 

summation is infinite.  If X is continuous then the summation is replaced by an 

appropriate integral taken over the space of all permissible values of X, i.e., an integral 

measure is used (e.g., Lebesgue, for a real space).   

Other measures of information regarding and comparing two random variables 

can be constructed from this definition, namely, mutual information and a divergence 

measure between the two respective pdfs of those random variables.  Generalizations of 

Shannon entropy have been constructed based on the notion of thermodynamic entropy, 

including α-Rényi entropies and its predecessors and nonclassical entropies from 

quantum mechanics and deterministic functions.  In all these Shannon entropy-defined 

measures of information, no measure of semantics or meaning is given or implied.  In 

fact, no meaning of receiver interpretation is attempted.  In addition, the use of entropy as 

a measure of uncertainty or disorder is a relativistic concept.  Disorder of a system is a 

function of the interpretation of its contents and organization.  Attempts have been made 

to define structural complexity as a means to describe disorder in an organization based 

on entropy measures.  These have included thermodynamic depth and computational 

mechanics (Lloyd & Pagels, 1988; Crutchfield & Shalizi, 1999).  However, these 

measures remain content-meaning deaf and do not address the ability of information to 

organize or build organization.   
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Shannon information is quantitative—a means to optimize the amount of physical 

bits into a closed system.  Nonetheless, there exists, in concept, two other types of 

information: shaping and semantic information (Ward, 2010).  Shaping information is the 

coding necessary to build or construct organization, the general DNA of organization.  

Semantic information is that which is necessary to give meaning to objects, the mapping 

or interpretation of content to things.  Shaping information is the scaffolding or essence 

of (self) assemblage.  The physics of organization through the use of network dynamics 

attempts to address shaping information.  This study approached shaping information 

through the concept of holons and holistic organization.  What of semantic information?  

Enter the concept of semiotics (i.e., the study of signs—what Peirce hypothesized as the 

atoms of interpretive communication and its sister concepts of semantics and pragmatics 

(Korzybski, 1994; Peirce, 1931)).  

Semantics attempts to measure how information is interpreted and what meaning 

is assigned to it.  The general semantics project, as developed by Korzybski (1994), 

expands this premise by differentiating human expressiveness of observation from the 

state or condition of reality of the object being described.  Semiotics is the study of how 

signs interact with each other.  Pragmatics studies how signs are interpreted by and tied to 

observers.  Signs are to semiotics what bits are to entropy.  The studies of linguistics, 

semiotics, semantics, and pragmatics attempt to qualify information, while Shannon-

Boltzmann type entropies attempt to quantify it.  

In this study, particle entities of information have been defined.  These entities, 

informatons, consist of generalized-uncertainty entangled bi-partite particles that, in total, 
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contain the physical information to propagate, the media (spacetime or matter occupying 

spacetime) that it travels in, and the receiving interpretative partner, the interpretant that 

emanates the linguistic mechanisms.  These linguistic mechanisms include those of its 

signs, intra-sign functionals, and its maps to an observer particle.  An attempt is then 

made to mechanize informatons by the concept of an appropriate version of an 

information field.  Once these structures are laid out, it is posited that informatons can 

drive the construction of organized evolutional groups of networks—holarchies and their 

calculus.  

The significance of this study is the presentation of an alternative theory for a 

more complete description of information and its connection to the genesis and 

sustainability of general intelligent multiagent systems as universal organizations.  These 

constructs are manifested through the use of holarchies, a new information particle, and 

field concepts for information organization.  Info-holarchies are propelled, in part, by the 

dynamics of general quantum entanglement manifested in the loop quantum gravity 

physical model.  This implied information dynamic may be applied to intelligent adaptive 

organizations. The evolution and management of information in these organizations, in 

turn, may then be described more succinctly—monitored and manipulated from virtual 

reality performance dashboard-caves.  The performance measurement of causative agent 

subgroups within an organization, along with the surveillance of their respective (game) 

strategies, achieves a new perspective in business analytics and intelligence applications. 

Proposed dashboard performance metrics are anchored in the physical and logical 

systems described in this study.  Hence, a generalized information management theory 



 

 

43

for organizations is proposed.  I propose that the info-holarchy serve as a metapattern for 

specialized dynamic information models applicable to business organizations and their 

skeletal information intrastructure.  The goal is to construct, using this class of 

specialized dynamic models, multidimensional performance dashboards that tie together 

the flow and symbiosis of information content, organization complexity, and their 

dynamic, real-time effect in determining the integrity of those organizations.  This 

concept of immersive displays would represent a natural evolution in performance 

dashboards from web portals displaying side-by-side classical and traditional 

performance measures, analytics, numerics, and pivot tables to ones emanating visual, 

holistic, multidimensional, and holographic views of the dynamic health of organizations 

and their supporting and component substructures.  These displays represent more 

effective and enterprising versions of a bird’s-eye-view for organization leaders and their 

decision-making potential.  With this more powerful description of the dynamics and 

evolution of organization, the lifecycle of entities can be patternized to dramatically 

improve their maintenance and economics.  

Implications for positive social change in this study include having a dramatic 

constructive impact on viable societies and groups that thrive on successfully networked 

organizations and their respective cultures.  Specifically, this study posits that an info-

holarchy more adequately describes a general information-based society, the prototypical 

organization of a heightened technological epoch.  Additionally, the hypotheses and 

results of this study represent a positive change to the manner in which societies can 

govern themselves—the autonomous creation of structure and processes.  Finally, this 
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study presents a metamodel that represents a fuller picture of information around and in 

one’s life, within and outside of the necessitated societal groups surrounding that life.  In 

this study, businesses are treated as specialized socio-economic groups and hence follow 

these patterns of information engagement, this study’s major positive impact on society’s 

business space. 

Summary and Transition 

In this chapter the concept of info-holarchies constructed from a generalized 

information field theory and bipartite information particles labeled as informatons was 

briefly introduced.  Model limitations, assumptions, their significance in the conceptual 

models of information, research hypotheses of the information model, terms to be 

expanded on and utilized, the flow and mature of the study to be conducted on these 

models, an ontology to the study, and a general background to the relevant 

conceptualizations were all discussed and reviewed in anticipation of the development of 

proposed concepts.  

In chapter 2 a thorough review and expansions on existing ideas of micro, meso, 

and macroscopic processes to be utilized as components in a model for this dynamic 

information framework will be presented.  Previous studies into the modeling of 

information, mathematical network organization construction, quantum dynamics, and 

general uncertainty principles will be reviewed and studied in detail for the eventual 

usage in building a novel information field, particle, and network calculus.  Further in 

chapter 2, the evolutional behavior of and emergence within information and organization 
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emanating in concepts from quantum gravity, general uncertainty, complexity, networks, 

intelligent CAMSs, and holarchies will be exploited and generalized for info-holarchies.  

In chapter 3 the research methodologies leading to the generalization of physical 

and logical models of information, matter, and organization manifested by the study 

metamodel—the info-holarchy will be discussed, along with the study’s ethical 

considerations, theory construction as a metaphor for data collection and sampling, and 

the researcher’s role in this relationship. 

In chapter 4, these tools will be presented as the foundation for a calculus in 

constructing intelligent multiagent networks serving as the structural prototype for info-

holarchies.  This information model is posited to unify the quantitative strengths of 

entropy-based information and the qualitative advantages of the interpretive prowess of 

the linguistic studies and models of semiotics, semantics, and pragmatics.  These novel 

concepts will be developed and exposed.  These metamodels will be specialized and 

staged as novel models of information and organization by their respective application to 

higher pattern analysis and seeking of certain network organizations in nature and man-

made societal artifacts.  Some of these examples will include the modeling of dendrite, 

neuron, and axial network development in brains and their generalizations in inference 

machines and the development a novel holographic temporal performance dashboard for 

information flow in business organizational dynamics.  

Finally, in chapter 5, a summary of concepts and applications discussed in this 

study will be presented along with computational thought experiments, proposed ideas 

and appeals for possible future research and development. 
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Chapter 2: Literature Review 

Introduction 

In this chapter a review of classical and contemporary developments of 

information in physical theories and organization will be done.  Some expansions and 

generalizations will be established alongside the reviewed theories, to be utilized in the 

construction of a new metamodel for information in this study.  Nonclassical physical 

theories include QM, GR, and so-called unified theories of everything including loop 

quantum gravity (LQG).  Classical physical theories include Newtonian and celestial 

mechanics and their extensions in deterministic paradigms of interaction.  Statistical and 

information theories are stochastic, but expound classical ideas in the sense of mostly 

being linear and straight-forwardly causal.  Emergent paradigms such as complexity, 

emergence, chaos, fractility, self-organization and evolutionary sciences are holistic in 

nature and nonclassical in approach.   

This study will utilize these nonclassical physical and information-theoretic 

approaches in constructing a generalized information theory and particle model to 

connect a physical concept of information to complex adapted multiagent systems 

(CAMS), holarchies and holons in organization, generalized uncertainty principles, 

information semiotics, nonlinear dynamics, and mathematical objects - topoi and 

causaloids used for constructing higher order abstractions of information systems.  The 

two major premises of this study—the informaton particle and field-process theories of 

information for organization evolution and dynamics—will heavily utilize and generalize 

concepts borrowed from this section. 
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This chapter will be organized as follows: (a) Classical information theories will 

be reviewed, along with contemporary extensions, including and most importantly, 

quantum information, (b) LQG will be introduced to be used as the physical basis for 

information structure in current physics literature, (c) field theories will be reviewed as a 

basis for an theory of information fields, including quantum fields, an earlier approach to 

a Bayesian information field, biological fields, and the classical physics fields of 

electromagnetism, (d) adaptive agent systems via complex adaptive systems and holonic 

agents will be reviewed as the network structure for the later development of the info-

holarchy, (e) a general introduction to the components and properties of complexity and 

complex systems will be started as a means of incorporation into an information-based 

physics model, (f) adaptation, evolution, and holarchies will be reviewed to inspect the 

very important properties of organization in dynamic entities and as a requisite part of 

this study’s metamodel, (g) nonlinear dynamics will be touched upon to describe the 

processes involved in a robust system, (h) quantum game theory will be introduced as a 

lead in to developing more general game-theoretic structures for the info-holarchy, (i) 

semiotics, as developed by Pierce, is described for forming a generalized theory of 

perception of information, and finally, (j) the topos theory of mathematical category 

theory is introduced as a means of more adequately describing the general power of this 

study’s models.   

Along with these discussions will be the introduction of a robust generalization to 

probability and causal analysis as applied to physical phenomena, namely the causaloid 

structure (Hardy, 2005). 
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In this section, studies of prior models of contemporary information theory and its 

extensions to nonclassical settings, hypothesized novel physical theories, complexity 

studies, evolution, adaptation, emergence, causaloid and topos and category theory have 

been garnered from peer-reviewed science journals and the ubiquitous Cornell University 

Library’s arXiv.org e-print archive repository for scientific articles that are fast tracked 

for the scientific community.  The premise of this study’s literature search was to surmise 

the most current, interesting, and novel approaches to information, physical theories, 

organization, and their respective abstract representations.  In particular, my interest laid 

in the past work done to promote any development of an information-based theory of 

physics from first principles. 

The literature reviewed was generally of abstract models of information, proposed 

novel physical theories, abstract field theories, general discussions on emergent sciences 

such as complexity, evolution, adaptive systems, holarchies, and finally, higher order 

mathematical representations of abstract objects.  In this manner, this study is a hybrid 

grounded study based on a tradition of abstract mathematical research, building on 

generalizing patterns of prior work on abstract models and logic (Brown & Porter, 2004). 

Quantum Information and Field Theories 

 Wheeler (1990), the highly influential theoretical physicist, first coined the 

phrase, “it from bit” to posit that all physical reality emanates from a computation 

involving information bits (logic units of any base, most notably Boolean) and their 

respective transport.  Wheeler’s thesis was based on digital physics, the category of 

concepts that postulates that the universe is actuated via a discrete manifestation of a 
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spatiotemporal medium, via information.  The concept of a universal hyper-computer 

which computes the evolution of the universe in existential real time lies at the 

foundation of this proposal.  

 Fredkin (2000) and Zuse (1970) were the first to publish general hypotheses of 

universal computers using reversible automaton to achieve this.  Fredkin generalized the 

concept to cover a discretized version of the philosophy of scientific development known 

as digital philosophy and digital mechanics, an atomism reducing all of life to categories 

of finite automata.  This idea has been most recently championed by Wolfram 

(1983,2002) utilizing his taxonomy of cellular automaton and his principle of 

computational equivalence (PCE) which describes a concept of computational 

categorization.  Lloyd (2006a, 2006b) followed up on this line of thought with quantum 

and black-hole versions of universe-wide computers.  See Appendix B for my version of 

a quantum-gravity universe hyper-computer and chapter 4 for a higher-order computation 

based on generalized fields—morphic and informaton computation, that dramatically 

extend the traditional information bit representation. 

 Despite the vagueness, oversimplification, and nonoriginality in Wolfram’s 

statements, digital physics as had a rigorous upheaval with the recent advent in quantum 

information theory.  Wheeler conceived a gedankenexperiment by devising a quantum 

version of the popular 20-questions game.  In this game, a participant is allowed to ask 20 

questions regarding an entity that they must then guess by the end of the twentieth 

question (or sooner).  The answers must be Boolean: yes or no.  In Wheeler’s version of 

this game, the participant asks questions to 20 different people and each person asked a 



 

 

50

question must decide what the entity is prior to the question.  The entity selected may be 

different from the others prior to each question.  In this manner, the ensemble of 20 

people emulates a quantum superposition of information on the state of an entity.  Each 

question then imitates a measurement or observation of the experiment.  The answer to 

each question is not known until an infinitesimal moment (perhaps one Planck time 

unit, 44

5
(5.39124...)10 s

p

G
t

c

−= ≈
ℏ

) just prior to the question being asked because the 

concealed entity involved has not been decided upon by the confidant until then.  

 Conceptually, this quantum binary or qubit game could be the basis for finding an 

answer to any informational question as presented in the universe.  Wheeler’s version of 

the 20-question game is observer-participant dependent because the answer has not been 

decided until the last possible moment before asking the binary question.  His emphasis 

on the physical ubiquity of qubit information motivated work into the possible discrete 

representations of the universe via quantum computation with generalized qubits.  More 

basic is the result that the number of binary questions necessary to converge to an answer 

to an original question with random variable X is proportional to ( ) ln ( )I X p X= − .  The 

entropy of X, ( )H X is the expectation of ( )I X .  For a quantum question game, this 

requires the quantum density operator of X, ρ .  This quantum extension to entropy 

comes in the form of the von Neumann entropy, ( ) lnS Trρ ρ ρ= − .  Quantum entropy 

will be generalized later in this chapter and in chapter 4 utilizing the GTU and other 

generalizations to classical entropy.  
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One of the main and most perplexing tenets of quantum mechanics is the 

observer-participant dependency.  Observations of a quanta, the generalization of a 

physical particle, are mathematically represented by a self-adjoint operator, A  acting on 

the state vector, 0( )xψ ∈�  of the quanta with spatial-temporal coordinates x and 0� a 

complex separable Hilbert space.  The observables can have possible values in the 

spectrum ( )S A , the eigenstates of A .  States evolve based on the Schrodinger equation: 

 0( ) ( )
t

i t H tψ ψ∂ =ℏ  (3.1) 

where 0H is the Hamiltonian operator that corresponds to the energy level of the quantum 

system.  If observables are used instead of states, then observables evolve based on the 

Heisenberg equation: 

 [ ]0( ) ( ),
d i

A t A t H
dt

= −
ℏ

 (3.2) 

Hence, a quantum system is defined by an algebra, � of operators defined over 0� .  This 

is a continuum problem although a quantization can take place for physical quantities of 

the system especially at the Planck scale (Madore, 1992).  Digital physics states that a 

quantum system is manifested in a complete or a spectrum of discrete spaces instead.  

The quanta in a physical system move in an unknown potential ( )V x .  At best only 

incomplete information about ( )V x is possible.  Enter perturbative techniques for finding 

local approximations via a quantization of the system.  Quantization is the separation of 

classical and quantum parts of the system around these locales using large numbers of 

quanta representing a condensate state (Rozali, 2008).  A local approximation to ( )V x in 
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a location 0x using quantization and perturbations is called background dependence.  

Long evolutions are hard to compute away from these locales and so these methods are 

used to approximate the quantum states locally.  Consequently, an important property that 

a physical system should retain is that of background independence (BI).  BI is satisfied if 

the system has gauge invariance with respect to spatial-temporal transformations (active 

diffeomorphisms) (Rovelli, 2008).  BI systems then have invariant fields within spatial-

temporal diffeomorphisms or as smooth topological mappings change the structure.  

Essentially one aspires to a physical system theory that takes into account global effects 

in generality.  

 In order to also satisfy general relativistic mechanics a physical theory must 

satisfy local Lorentz invariance.  The Lorentz invariance of a field value is the invariance 

of a field value under the Lorentz spatio-temporal transformations: 
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2

1
where , and  is the speed of light.c

c
κ = −  Simple discretization of spatial-temporal 

structures via a lattice representation unfortunately does not posses Lorentz invariance.  

In this regard, the idea of a fuzzy sphere was devised to represent space at or under the 

Planck scale with generalized fuzzy points that resemble cells while maintaining a usual 

continuous approximation at super-Planck scales.  Within this representation is the notion 

of fuzzy points on a sphere that in fact satisfy these conditions while retaining Lorentz 

invariance.  Field theories are satisfied on such representations using definitions for a 
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path integral and algebras of matrices replacing algebras of observable operators for 

quanta (Madore, 1992).  

 The classical container of discrete information is the bit, the abstract 

representation of a Boolean state variable.  In quantum mechanics this abstract container 

is generalized for the possibility of superimposed states to be discussed next.  These 

containers are called qubits and were first coined by Schumacher (1995).  In the next 

chapter a generalization of a minimal or atomic discrete information container along the 

lines of a generalized uncertainty concept will be introduced.  In addition, later in this 

chapter, it will be pointed out that a physical system described by a fuzzy probabilistic 

logic further generalizes a quantum system.  Qubits represent idealized quantum states of 

an attribute or observable of a quantum system.  Traditionally, the 
1

2
± spin of a particle is 

used as an analogy for the pure, nonsuperimposed Boolean states of a quantum particle or 

quanta.  In a quantum physical system, a qubit can be used to measure any Boolean state 

attribute of a quanta.  In this representation, the poles of a 2-sphere (Bloch sphere) are the 

two pure states of the superposed state of a qubit: 

 0 1 , ψ α β= +  (3.4) 

2 2
where , , 1α β α β∈ + = C and the respective squared absolute values are the 

probabilities (amplitudes) of each state occurring.  A point on the surface of the Bloch 

sphere represents a general (mixed) quantum state of a single qubit with 2D spherical or 

3D Cartesian coordinates representing the probabilities respectively of each pure state 

part of that superimposed state, i.e., the spherical coordinates ( , )θ ϕ as below with the 
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state representation
cos sin

0 1
2 2

ie ϕθ θ
ψ = + .  Here, the probability amplitudes are 

determined by the azimuthal angle, ϕ  and the phase angle,θ . 

 

Figure 1. The Bloch sphere for qubit representation 
Adapted from “The Bloch-sphere”. By Smite-Meister, 2009. Copyright 2009 by Smite-
Meister. Reprinted with permission under the GNU Free documentation license – 
Creative Commons Attribution-ShareAlike 3.0. 
 
 

 Because the surface of the Bloch sphere is parameterized by the component ( , )θ ϕ , 

a potentially infinite amount of information is contained within a qubit.  However, the 

classical realization of a qubit is the collapse to a bit.  The Bloch sphere will be revisited 

when projections of states are considered in qubit computations.  Now consider 

composite quantum systems, starting with the composition of two separate qubit systems 
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a and b.  Superposition in quantum mechanics allows for the existence of superimposed 

states of the tensored composite system a b⊗ : 

 00 01 10 110 0 0 1 1 0 1 1
a b a b a b a b

ψ α α α α= + + +  (3.5) 

where 
2

0,1
0,1

1ij

i
j

α
=
=

=∑ , this representing a general superimposed state where each individual 

qubit is the same and different from each other with respective probability 
2

ij
α .  There 

are many such superimposed states.  Of specific importance are those superimposed 

states that cannot be expressed as products of each individual qubit state, that is: 

 
( ) ( )

00 01 10 11

0 1 1 0

0 0 0 1 1 0 1 1

0 1 1 0

a b a b a b a b

a b a b

α α α α

α β α β

+ + + ≠

+ ⊗ +
 (3.6) 

where
2 2 2 2 2

0 1 1 0
0,1
0,1

1,  1,  and 1ij

i
j

α α β α β
=
=

= + = + =∑ .  These superimposed states are 

labeled as entangled.  Of even more importance experimentally are the subset of 

entangled states named Bell states given by: 

 

1
| | 0 | 1 | 1 | 0

2

1
| | 0 | 1 | 1 | 0

2

1
| | 0 | 0 | 1 | 1

2

1
| | 0 | 0 | 1 | 1

2

a b a b

a b a b

a b a b

a b a b

ψ

ψ

ϕ

ϕ

−

+

−

+ = +

− =

+ =

+ =

 (3.7) 

The Bell states opened the way to show that the measurement of one qubit gives the value 

of the other qubit if they are entangled as such, regardless of their separation distance.  
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This led to the famous EPR (Einstein-Podolsky-Rosen) paradox and of Einstein’s 

skepticism towards the completeness of quantum mechanics without further variables 

(Einstein, Podolsky, & Rosen, 1935).  This represents the gist of the nonlocality of 

quantum mechanics.  Bell established inequalities of measureable physical quantities that 

real and local-based physical theories must satisfy.  Quantum mechanics violates these 

conditions in addition to not feasibly requiring hidden variables, hence the nonlocality of 

quantum causality (Bell, 1964).  Clauser, Horne, Shimony, and Holt generalized Bell’s 

inequalities to a new condition for physically plausible correlations, the CHSH inequality 

for a bi-partite system given by: 

 
2,

( ) 3A B

x y

x y

s p m m x y
∈

= ⊕ ≡ ∧ ≤∑
�

 (3.8) 

where 2� is the moduli 2 group, A and B (A stands for Alice and B for Bob, two abstract 

physical, possibly human detectors or quantum systems used in the quantum information 

and entanglement literature) are separate quantum systems and their respective bit 

measurement results for x and y are A

xm and B

ym .  On the other hand, separable quantum 

states involving local hidden variables with independent observers satisfy Bell-type 

inequalities (Loubenets, 2005; Loubenets, 2009).   

Nonetheless, recently, it was shown that three possibilities can be had by quantum 

states.  Quantum states (a) do not allow for a local realistic model, (b) do not possess the 

required EPR-type correlations, or (c) satisfy both (a) and (b) (Zukowski, 2006).  

Entanglement is sometimes referred to as stronger-than-classical correlations because of 

this seemingly nonlocal causality.  Unentangled or separable states satisfy the 
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condition ( ) 1Tr ψ = , while entangled states do not.  The operation ( )Tr ψ is the trace 

operator on ψ , defined as ( ) | |n n

n

Tr ψ λ ψ λ=∑  where ( ){ }n
λ is any orthonormal basis 

in the Hilbert space of states.  Superpositions for bi-partite systems can be generalized to 

multiqubit systems.  In these multiqubit states, coalitions of qubits may be entangled with 

other distinct coalitions, but not individually within each.  Combinatorial entanglement 

and unentanglement in and outside of subsets of qubits ensues.  In an n-qubit system, a 

simple superposition can be expressed as: 

 
1

1

... 1 1
( ,..., )

...
n

n

i i n n
i i

i iψ α= ∑  (3.9) 

where
1

1

2

...
( ,..., )

1
n

n

i i

i i

α =∑  and the sums are a subset of all combinations { }1( ,..., ) 0,1
n

n
i i ∈  

entailing the distinct products of binary states of n bits.   

Entanglement of a general n-qubit superposition sum, 

 
11

1
1

... 1( ,..., )
( ,..., )

...
m m ll

m ml
m ml

i i m m
mi i

i i M

i iα
∈

⊗∑  (3.10) 

 entails the condition that there does not exist a separable tensor product over some subset 

of n-vector combinations { }1( ,..., ) 0,1
n

n
k k K∈ ⊆ , such that, 

 
11

11
1

... 1 11( ,..., ) ( ,..., )
( ,..., )

... ...
m m ll

m m nl
m ml

i i m m n nmi i k k K
i i M

i i k kα
∈

∈

⊗ = ⊗∑  (3.11) 

for each of the superposition sum’s l-vector combinations { }
1

( ,..., ) 0,1
l

n

m m
i i M∈ ⊆ , l n≤ , 

over some combination of tensor product states involving subsets of n systems 

and
1

1

2

...
( ,..., )

1
n

n

i i

i i

α =∑  .  Each factor in the tensor product under the sum is of length at most 
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n.  A subset of the component states in a superposition could be entangled or each one 

could be entangled in the case of a fully entangled superposition state.  Again, as in the 

case of a 2-qubit system, ( ) 1Tr ψ = , for an unentangled state in an n-qubit system.  

Otherwise it is an entangled state.  

An information container or system that is in an entangled state is referred to as 

an e-bit.  Computation and information manipulation with an e-bit can be achieved and 

will be reviewed and further enhanced.  In the case of an e-bit, the act of decoherence is 

detrimental to an end computational result being realized.  Decoherence is the leakage of 

information from a qubit that has been coupled to a neighboring environment.  This is 

expressed as the degeneration of the coherency of an entangled state.  It is evolutionary 

since decoherence happens over a period of time.  In more detail, consider the qubit-

environment coupling induced by a joint unitary time evolution operator, U: 

 
( )

( ) ,  0,1
U t

jj E j E t j =֏  (3.12) 

where E is a fixed initial state of the environment and Ej ,j=0,1 are the corresponding 

evolution operators for the qubit states at time t induced by U.  In terms of an 

entanglement between a superimposed qubit, 0 10 1φ α α= +  and its environment, E, the 

time evolution operator, U induces the entangled state: 

 ( )
( )

0 1 0 0 1 10 1 0 ( ) 1 ( )
U t

E E t E tα α α α+ ⊗ +֏  (3.13) 

The corresponding reduced density matrix of a qubit-environment entanglement, 

Eφ + , is given by the trace of ( )E tφ + over all the states of φ  (Ekert, Palma, & 

Suominen, 2001): 
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( )

2 *
0 0 1 1 0

( ) 2*
1 0 0 1 1

( ) | ( )
( )

( ) | ( )
E tE t

E t E t
t Tr

E t E t
φφ ρ

α α α
ρ

α α α+

 
 = =
  

 (3.14) 

The off-diagonal terms approach 0 as t →∞ , since the information leakage of the qubit 

into the environment, given by the decoherence of the qubit particle, increases with time.  

Subsequently, the operators, 1 0( ) and ( )E t E t approach mutual orthogonality with time.   

Specifically, ( )
1 0( ) | ( ) tE t E t e−Γ= for some increasing function in time, ( )tΓ → ∞ .  

In this case, the (reduced) density matrix of the entangled system approaches a diagonal 

matrix and so, the entangled state, Eφ + , approaches being a pure state, consequently 

losing the efficiency of an entangled computational unit.  In the more general case of 

multipartite qubit systems, it has been shown that the decay of the coherences of the 

registers or information containment of n qubits scales as ( ) ( )poly n t
e

γ− . ( ) ~poly n n for 

independent interactions with the environment, while, 2( ) ~poly n n for collective 

interactions with the environment (Ekert, Palma, & Suominen, 2001).  This implies that 

multiple qubits coupled with each other would reduce decoherence, i.e., the use of 

multiple qubits to compute results for a single classical bit are less prone to decoherence.   

Quantum noise may also be introduced into the evolution of a qubit in a quantum 

channel, as noise is introduced in a classical bit stream.  Quantum noise is manifested by 

the quantum uncertainty in the position of a particle and hence an unknown or unwanted 

change in the density matrix (operator) of a quantum system.  This class of noise further 

degrades the coherence of qubit systems and error-correcting schemes have been 

developed to combat this phenomenon, including symmetrisation operators, quantum 
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Hamming codes, multiple qubit codes, and fault-tolerance (Macchiavello & Palma, 

2001).  More generally, the evolution time operator, U, acts on a set of qubits with initial 

state, φ and states of the environment E, 
E

ψ by: 

 ( )
( )

( )
U t

i iE E
i

E tφ ψ φ ψ→∑  (3.15) 

where each 
i

E , is a general error operator, expressible as a tensor product of Pauli 

operators acting on the qubit streams, φ .  Generalized noise and decoherence can then 

be expressed in terms of the Pauli operators , ,  and 
x y z

σ σ σ operating on the qubits.  The 

following convention is used: , ,
x z y

X Z Y i XZσ σ σ≡ ≡ ≡ − = and 
u v

X Z where u and v are 

n-bit binary vectors that indicate where the X and Z operators appear in a general tensor 

product operation of the form 
i

i
A⊗ where , , ,

i
A X Y Z I= .  Any error correction operation 

then translates an error-prone state, 
u vX Z Aφ φ→ where ,

v u
A Z X= .  The succession 

of these error correction operators is to eventually correct a general error operator, Ei, so 

that, 
iE φ φ→ .  Note that only error correction operators for X and Z are sufficient to 

correct a general quantum error (Macchiavello & Palma, 2001). 

Further generalizing multipartite quantum systems are n-qudits.  In an n-qudit 

system, n quantum logical units are present, the ith unit with multiple possible states 

(levels) 2
i

d > .  The Hilbert space for this multipartite, multilevel system is composed as 

the tensor product of n Hilbert spaces each with dimension, 2
i

d ≥ , for 1, 2,...,i n= , 
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i.e.,
1 i

n

d
i=

= ⊗� � .  A typical state in an n-qudit system which is totally separable can be 

expressed in terms of density operators as: 

 
1 ...

1
n i

n
i

A A i A

i

pρ ρ
=

= ⊗∑  (3.16) 

where
i

A is the i
th subsystem (which may consist of a single qudit), 

i

i

Aρ is its density 

operator, and 
2

1

1
n

i

i

p
=

=∑ .  Separability and hence entanglement in multipartite systems 

can come in subset combination.  Partial separability and entanglement as well, can come 

in subset combinations.  To review, entanglement comes when a state cannot be 

expressed as a product of mixed or pure states.  Because of subset entanglement, 

entanglement swapping can be actuated when partial entanglement between subsystems 

of qudits leads to the allowance of entanglement with other subsystems of qudits.   

One result illustrates the variety of possibilities in such swapping schema.  When 

subsets of qudits, say, 
j

m of them form the jth subsystem,
i

A , and each of these 

subsystems is not correlated with each other, and when a set MA consisting of i

i

a∑ qudits 

is formed with 
j

a qudits from the jth subsystem are measured and subjected to a 

generalized Bell-type measurement, then the remaining set, \ M
A A consisting 

of ( )
j j

j

m a−∑ qudits collapse into a maximally entangled state (Bouda & Buzek, 2002).  

In general, entanglement of multipartite, multilevel systems becomes exceedingly diverse 

and no standard entanglement in terms of simple e-bits has been defined in such cases 
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(Morikoshi, Santos, & Vedral, 2004).  Generally, a measurement of entanglement is 

given by the von Neumann entropy, ( ) ( ) logS Trρ ρ ρ=  or its generalized Renyi 

α −entropies.  A more practical measure of entanglement comes from the entanglement 

of formation: 

 
{ }1 ...1

...( ) inf ( )
n A An

i i

i

f A A i
p

i

E p S
ψ

ρ ρ= ∑  (3.17) 

where the supremum is taken over all decompositions, { }p
i i

ψ of the multipartite 

system 1... n
A A and

...1A An

iρ is the reduced density operator of 
i

ψ .  
1 ...( )

nf A AE ρ is the minimum 

average entropy over all decompositions of the multipartite system.  The case for bipartite 

systems is given in (Jaeger, 2008, p. 51)  and has been generalized here for multipartite 

qudit systems.  The dual to entanglement of formation is the localizable entanglement 

defined as: 

 
{ }1 ...1

...( ) sup ( )
n A An

i i

i

f A A i
p i

E p S
ψ

ρ ρ= ∑  (3.18) 

For completeness, a final measure of entanglement will be mentioned, the entanglement 

of distillation (free entanglement): 

 
1 ...

( )
( ) limsup

nD A A
m

k m
E

m
ρ

→∞

 =  
 

 (3.19) 

where ( )k m is the number of singlet states
...1A An

k

ψ
⊗− that can be extracted from m copies of 

1... nA Aρ .  
1 ...( )

nD A AE ρ is a measure of the asymptotic separability of the system
1... nA Aρ  

(Jaeger, 2008, p. 51-52)  In general, 
1 1... ...( ) ( )

n nD A A f A AE Eρ ρ≤ .  For pure states, 
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1 1... ...( ) ( )
n nD A A f A AE Eρ ρ= .  Forming the difference defines a bound entanglement measure 

(Jaeger, 2008, p. 53):  

 
1 1 1... ... ...( ) ( ) ( ) 0

n n nA A f A A D A AB E Eρ ρ ρ= − ≥  (3.20) 

See Horodecki, et al. (2007) for a more complete treatment of entanglement measures.  

Essentially an entropic measure of entanglement is a measure of the amount of 

information that is available to be entangled.  However, in general, surmising if a state is 

entangled in a general multipartite system is difficult because of the combinatorial 

possibilities involving multiple dimensions and large numbers of quanta.   

The problem of developing a condition to test for entanglement has been solved 

for limited numbers of quanta and state dimension (Rungta, Munro, Nemoto, Deuar, 

Milburn & Caves, 2000).  Conditions also exist in which a minimum of pairwise 

entanglement is necessary in order for multiple entanglement or subset entanglement to 

be possible (Bouda & Buzek, 2002).  It seems that in a multipartite qudit system, too 

strong of an entanglement between any two quanta prevent entanglement sharing among 

other quanta.  In particular, by performing a Bell-type measurement on a subset of 

entangled subsystems, the remaining unmeasured quanta collapse into a maximally 

entangled state (Bouda & Buzek, 2002).   

The concept of entanglement monogamy refers to the quantum condition that if 

two qudit systems, A and B are maximally entangled, then neither one can be correlated 

to a third, C by a local-operation-classical-communication (LOCC) measurement 

(Coffman, Kundu, & Wooters, 2000).  However, under submaximal or partial 

entanglement, this monogamy condition can be relaxed.  It has been posited that as the 
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dimension d of the number of states in each subsystem increases, entanglement sharing 

increases (Adesso, Ericsson, & Illuminati, 2007; Dennison & Wooters, 2001).  This 

tendency is called entanglement promiscuity in the limit. 

Entanglement is referred to as a super-correlative theory of causality, that is, a 

basis for causality that is stronger than probabilistic correlations.  No-signal theories are 

those which posit that information cannot be transferred between quanta at superluminal 

speeds, though correlations can be made.  In a generalization to this description of 

information transfer limitation, the concept of Information Causality was introduced—

transmission of m classical bits can cause an information gain of at most m bits 

(Pawlowski, et al., 2009).  Communication of m qubits, on the other hand, can produce 

information gains greater than m qubits experimentally shown using a quantum super-

dense coding protocol (Bennett & Wiesner, 1992).  Information causality describes a 

principle that is applicable to theories of physics that are more general than QM in the 

sense of possessing stronger correlations, i.e., super-quantum correlations.  Super-

quantum correlative systems violate the information causality principle, while those of 

classical and quantum systems do not.  One point this dissertation will question—is there 

some form of intelligible information transferred where only super-correlations are 

present? Just as statistical correlation does not imply physical causality, does super-

correlation imply a version of super-causality in the universe? 

Superluminal communication via e-bit relations is controversial because within 

the constraints of the classical communication theory of sources and receivers and the 

mutual management of how a signal between the two may be translated, no information 
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is relayed.  Information in a quantum e-bit situation is classically reached by collapsing a 

quantum e-bit to a classical bit.  There are intermediate levels of communication strength 

that depict mixed degrees of classical and quantum causality and there are super quantum 

causalities as well.  Stronger than quantum correlations are produced by relaxing the 

constraint of relavistic causality, that is, admitting superluminal classical communication.  

Label such theories as s-quantum or super-quantum theories and their information 

containers as s-bits (superluminal).  The maximal bound on the CHSH inequality is 4 in 

the case of independent correlations.  For quantum correlations it is 2 2 .  It was posited 

that the condition of relativistic causality prevents a version of a quantum theory from 

reaching this upper bound.   

However, in an insightful argument used by Popescu and Rohrlich, by 

considering a one-dimensional jamming effect from a third party, J, onto two spacelike 

separated quantum systems, A and B, making measurements on a locally past-correlated 

event, a quantum-like theory can be developed in which relativistic causality is preserved, 

while, correlative or physical motion effects may preclude causes, in a consistent manner 

(Popescu & Rohrlich, 1996).  In this experiment J is spacelike separated from both A and 

B and produces a jamming of the measurements made by A and B in the following 

manner.  Without jamming, the entangled event measured by A and B violates the CHSH 

inequality, while with jamming it is classically correlated.   

Additionally, the jamming mechanism must satisfy the conditions of unarity and 

binarity which prevent J from senting superluminal signals to A or B individually or 

jointing in such a way that it can be informationally read, i.e., comprehended.  In these 
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classes of theories, the bound on the CHSH inequality can reach 4.  These are the so-

called PR-box or nonlocal information channels.  In other words, quantum mechanics is 

not the only theory that reconciles relativistic causality with nonlocality.  Moreover, 

stronger correlative theories exist which are consistent with general relativity and 

quantum mechanics.  We label such theories as nl-correlative and the participating 

information containers as nl-bits.  One can then order the strength of information 

communication theories as: bit e bit nl bit s bit− − −≺ ≺ ≺  (Jaeger, 2009, p.254).  

Superluminal signal communication, while being contradictory in a classical sense, is 

possible, in a quantum mechanical and relativisitic realm, if the signal propagated is not 

comprehended until after the trailing light is received.  Essentially, this means that super-

quantum signals abound from all corners of the universe to each abstract brain, but its 

classical understanding lags behind its light cone.  The proverb, “the answer has always 

been inside you”, rings true, only in a super-quantum universe. 

 Generalized entanglement in multipartite systems based on a notion of a 

generalized uncertainty system which, in turn, is based on composites of different notions 

of uncertainty is a key component in forming a new model of super-information and 

communication.  Quantum and fuzzy systems generalize probabilistic ones.  Would 

systems based on general uncertainty and super-quantum theories generalize quantum 

and fuzzy systems? What of the notion of macroscopic development of larger systems 

from smaller ones that follow such rules? The bigger question may be “how do systems 

coalesce into organizations and can generalized entanglement as proposed above serve as 

a calculus for forming categories of macrosystems such as CAMSs and HMASs?” This 
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possibility will be discussed and developed.  One must first look at theories of formation 

of microsystems and macroorganization.   

Quantum gravity as seen through the lens of loop quantum gravity (LQG) 

spinfoam models, a version of a topological quantum theory which combines in a 

consistent and physically plausible way the structural laws of general relativity and 

quantum mechanics, will be reviewed as the preferred approach to unifying QM and GR.  

This will be followed by a review of the concept of information fields as a manner in 

which signal processing can be combined with physical field theory to compute and view 

ensemble information flow.  Next, returning to Wheeler’s call for a discrete 

computational space, the notion of a fuzzy sphere discretization of quantum mechanics 

and qudit computation on it will be discussed as a physical information theory usurping a 

computational one. 

Loop Quantum Gravity and the Spinfoam Formalism 

 In the LQG rendition of a unified theory (among many others, Witten (1998) 

superstring/M-Theory, canonical quantization, Halvorson & Mueger (2006 ) algebraic 

quantum field theory (AQFT), Penrose (1967) twistor theory, and Lisi (2007) geometric 

Lie group E8, being other major unified conceptual frameworks, albeit background 

dependent), the prescient discrete spacetime model is the spinfoam network (SFN).  Loop 

quantum cosmology (LQC) is an analogous formalism for the cosmological studies 

leading to a replacement of the Big Bang Theory with LQ phenomena that posits that a 

quantum bounce was followed by super-inflation (Ashtekar & Sloan, 2010).  In this brief 

overview of LQG spinfoam networks, the expository reviews of Rovelli (2008) and 
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Thiemann (2002) of LQG, and the spinfoam network formalism of Pérez (2003) will be 

utilized. Penrose (1971) had developed the spin network formalism for representing states 

of quanta and their fields as an abstract directed graph with nodes representing states of a 

quanta and edges representing fields between quanta.  LaFave (1993) first developed the 

formalism for spinfoams as path histories for spin networks analogous to Feynman path 

histories and diagrams for particle path histories.   

 These ideas were followed up for the more general case of quantum gravity 

spinfoams as histories of spin networks by a group of physicists; most notably Ashtekar 

(1986) and Rovelli (2008).  In this configuration a space cell volume is represented by a 

node, n
i , in an abstract graph, Γ , while adjacent surface boundaries between cells are 

represented by edges, l
j  of that graph.  SFNs are abstractions for the physical 

connections in the universe and are labeled by the triplet, ( , , )
n l

s i j= Γ  (Rovelli, 2008, p. 

19).  A quantum state ψ  that comprises N cells or grains in space is otherwise 

represented by a graph, Γ with N nodes.  The graph Γ is a member of an equivalence 

class of embedded subgraphs in a 3-manifold space.   

 Specifically, these graphs are embedded spin-networks (ESNs).  These states 

represent the polymeric excitations of the gravitational field.  Each ESN equivalence 

class, s
⌢

 is defined under smooth deformations (diffeomorphism invariance),ξ  and is 

called an s-knot.  Two members of the same equivalence ESN class are gauge equivalent 

because the diffeomorphism gauge values are shared.  ESNs define the abstract reference 

global structure for space.  Quanta observables are then localized into these networks and 
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their quantum states are defined by an s-knot.  The relevant observables in LQG using 

ESNs are geometric measures—cell boundary surfaces and volumes. 

 

 

Figure 2. Spinfoam embedded networks 
 
 In the transition from one spatial-temporal coordinate ( , )x t to another ( ', ')x t , the 

transition probability amplitudes (propagator) given by: 

 
0 ( ')

(( , ), ( ', ')) ' , | ', '
i

H t t

W x t x t x e x x t x t
− −

= =ℏ  (3.21) 

where 0H is the Hamiltonian, ,x t is the eigenstate of the Heisenberg position operator 

x(t) and we define , 0x x= , completely describes the quantum dynamics of that path.  
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See Appendix A for a review of Hamiltonians, propagators, and transition probability 

amplitudes with respect to Feynman path histories.  In general, for any observable states 

measured at the two points, ( ')tψ and ( )tψ respectively, the propagator is given as: 

 
0 ( ')

( ', ) '
i

H t t

W eψ ψ ψ ψ
− −

= ℏ  (3.22) 

The pair ( ', )ψ ψ maps to a tensor product state 'ψ ψ ψ= ⊗  in the appropriate tensor 

product of the input and the dual of the output Hilbert spaces respectfully.  The 

propagator can now define a generalized state labeled as 0  (the covariant vacuum 

state), through the calculation ( ', ) 0 ( ' ) 0 |W ψ ψ ψ ψ ψ= ⊗ =  (Rovelli, 2008, p.22-

23).   

 Rovelli extends this definition to field values for Quantum Field Theory (QFT) by 

replacing the coordinate states ( ', )ψ ψ  with the pair ( , )ϕΣ , where Σ  is a 3-D surface 

bounding a region in space and ϕ  is the field configuration on that surface,.  The 

pair ( , )ϕΣ resides in a space � that is the product of 3-D surfaces and all possible field 

configurations on those surfaces.  Formally, one defines: 

 
 has value

of  and is a

field configuration

on 

( , ) ( , )W W
η

ϕ

ϕ η

Σ

Σ = Σ∑  (3.23) 

using the Feynman sum over all histories (in this case, of all possible field configurations 

η over Σ with the value of ϕ ) from one point to another. 
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Figure 3. Spinfoam worldsheet 
Adapted from “Quantum Gravity” by C. Rovelli, 2008, p. 327. Copyright 2008 by 
Cambridge University Press. Reprinted with permission. 
 

 In a background independent physical system, because of diffeomorphism 

invariance, ( , )W ϕΣ does not dependent on the geometric surfaces, Σ , only on the field 

values on those surfaces (cell boundaries), ϕ .  Since one can take as one example of a 

field configuration that of a gravitational field, then utilizing relativistic dependence of 

spacetime on that field, the propagator will remain dependent only on the combined 

spatial-temporal separation of the points, not the underlying geometric structure.  In LQG 

therefore, measurements are in the form of propagators that combine the difference 
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effects of dynamic field values (such as particle forces) and spatio-temporal coordinates.  

These are separated measurements in a background-dependent QFT.  In spin-foam 

geometry, an ESN replaces the spatial-temporal coordinates, ( , )x t .  Furthermore, in a 

quantum experiment, one can rig measurements so that the starting ESN, s, is the state to 

measure and the ending ESN, 's , is the observed state measurement.  In this way, the 

propagator, ( , ')W s s , gives the correlational probability of observing 's , given that the 

actual state was s.  These transition amplitudes are defined as: 

 ( , ') | | 'W s s s P s=  (3.24) 

where s and 's are s-knot states and the operator P, is the projector onto the space of 

solutions of 0Hψ = (kernel), and H is the Hamiltonian of the quantum spin-foam 

system.  More explicitly, this propagator may be expressed as a sum taken over the 

histories of the spin networks connecting  to 's s of amplitudes: 

 ( , ') ( )W s s A
σ

σ=∑  (3.25) 

where 1( , ,..., , ')
m

s s s sσ = is a sequence of spin networks that is called a spinfoam.   

 Additionally, each amplitude can be expressed as a product of step amplitudes, 

( ) ( )A Aγ
γ

σ σ= ∏ , each given by a matrix with elements: 

 
3 ( )

1 | |
d xH x dt

m m
A s e sγ

κ

−

+
∫=  (3.26) 

whereκ is the Hilbert space of gravity and matter.  Spinfoams represent a generalization 

of Feynman diagrams for discrete quantum gravity in the following sense.  Spinfoams are 

embedded 4-D graphs in spacetime which sweep along the time dimension creating 
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worldsheets according to the Hamiltonian operation H.  The surface faces, denoted by f, 

of a spinfoam are the world surfaces and denote the links in the graph.  The edges, 

denoted by e, are the worldlines of the nodes of the graph.  In addition to the embedded 

graph representation of a spinfoam, Γ , there are irreducible representations, fj associated 

with the faces f, and intertwiners, e
i associated with edges e.  A spinfoam is then formally 

expressed as a 2-complex, ( , , )f ej iσ = Γ .   

 Associated with the graph Γ will be a set of weights determined by the graph and 

denoted by ( )w Γ .  Each node (vertex) will have an amplitude that is determined by the 

edges and faces adjacent to it and hence to their representations and intertwiners 

respectively, ( , )f eA j iσ .  This amplitude can be extended and expressed as a separable 

product.  Using the weights of the graph, the propagator of a spin network, s, which is the 

boundary ∂ of a possible set of spinfoams, σ , that is, those spinfoams such that s σ= ∂ , 

can then be written as: 

 ( ) ( ( )) ( , ) ( , ) ( , )f f e e e e f e

s f e

W s w A j i A j i A j iγ
σ γ

σ
∂ =

= Γ∑ ∏ ∏ ∏  (3.27) 

The propagator, in the case of a spinfoam that is connected by two spin networks, 

 and 's s can be expressed as: 

 
'

( , ') ( ( )) ( , ) ( , ) ( , )f f e e e e f e

s s f e

W s s w A j i A j i A j iγ
σ γ

σ
∂ = ∪

= Γ∑ ∏ ∏ ∏  (3.28) 

the transition amplitude between two quantum states of a gravitational field (Rovelli, 

2008, p. 329).  This is the general form of the computation of a spinfoam model 

propagator.  
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 Discretization of the spinfoam model is the means toward its realistic 

computation.  To this effect, triangulation of a spinfoam is constructed.  In 4-D 

spacetime, the faces are 4-simplices, denoted by 4∆ .  The duals of such faces are what are 

used in the formalism and are denoted by *
4∆ .  When 4∆ is a 4-simplex, *

4∆ is a point vertex.  

Additionally, if 4∆ is a (hyper) tetrahedron then *
4∆ is an edge joining 4 faces, if 4∆ is a 

triangle then *
4∆ is a face, if 4∆ is a segment then *

4∆ is a 3D region and if 4∆ is a point 

then *
4∆ is a 4-D region.  Vertices of a spinfoam are embedded in each 4-simplex of a 

triangulation.  The collection of faces, edges, and vertices of a 4-simplex, of *
4∆ , along 

with their respective relations at the boundaries is called the 2-skeleton of *
4∆ .  This is a 

2-complex.  Note that 4-simplices of the triangulation can be generalized to n-simplices 

of n-polyhedra in a tile covering of the spinfoam model.  Then one can consider the n-

skeleton of the dual of the tile covering *
nΛ consisting of lower dimensional polyhedra, 

edges, vertices, and their respective duals and their boundary relations and adjacencies.  

 To greatly simplify the development of an expression for the calculation of the 

sum-of-paths, an intermediate theory of models called BF-Theory will be used to setup 

the terms.  Denote by e, an edge of *
4∆ and e

g the holonomy of ω (a connection in the 

spacetime manifold), along e.  Generally, a holonomy is a relative measure of how much 

geometrical information is preserved from the curvature of a connection during its 

parallel transports, i.e., going from one point of the connection to another along a parallel 

path on the surface of a manifold.  Connections of a manifold are roughly the smooth 
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mappings from one tangent space to another in that manifold (see definitions for 

connection, holonomy, and tangent spaces to a manifold).  Holonomies are closely 

related to the curvature of forms of the manifold by the Singer-Ambrose Theorem.  

Hence, the group of holonomies of a connection of a manifold gives information about 

the geometric curvature of the surface.  This, in turn, will give an indication of the effect 

of the curvature of the surfaces of the triangulations to preserving the geometry of the 

underlying spacetime manifold.  Define the connection, e
g , along the edge e, using the 

Lie Group interpretation, (2)SU , as: 

 exp[ ] (2),i

e i

e

g SUω τ= ∈∫�  (3.29) 

using Einsteinian notation.  Additionally, let i

fl be the line integral of i
e along a segment f 

in the triangulation ∆ .  The pair 3( , ) (2)i

f el g SU∈ × � is then chosen as the variable of 

discretization of a spinfoam.  The Hamiltonian action functional can then be written as: 

 [ , ] [ ]i

f e f f i

f

S l g l tr g τ=∑  (3.30) 

where we write the product of group elements, 
1
...

n

f f

f e eg g g= over n edges.   

 Following Rovelli, one writes the path integral as: 

 
1

1 ...

dim( ) [ ( ... )]f

n

n

j f f

f e e e

j j f f

Z j dg tr R g g= ∑ ∏ ∏∫  (3.31) 

where fj
R is the 2-form curvature of the 1-form fjω .  Regressing momentarily to the 3-D 

space manifold, the integral in the sum above can be expressed in the form: 

 ' ' 'v vαβγ
α β γ  (3.32) 
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where v
αβγ is the normalized intertwiner operator for the relationships between the triplet 

spin state 1 2 3( , , )j j j .  At each vertex there are four contracting tensors resulting in a 

function of six spins of the six faces that bound the vertex point.  Expressing this in a 

compact visual symbol: 

 

, , {1,...,6}

1 2 3

4 5 6

    
{6 }

    
h k l

h k l

h k l

v

j j j
j v

j j j
αβγ

α α α

≠ ≠
∈

 
≡ ≡ 
 

∑  (3.33) 

The trivalent vertex 3-tensor v
αβγ can be further visualized as a tetrahedron using the 

intertwiner 6-j Wigner symbols it contains at each edge joining into the vertex: 

 

Figure 4. Spinfoam intertwiner operator in Wigner 6j symbology 
Adapted from “Quantum Gravity” by C. Rovelli, 2008, p. 334. Copyright 2008 by 
Cambridge University Press. Reprinted with permission. 
 

The partition function for a 3-D space spinfoam triangulated model can be written as: 

 

                        
1 1... ...

dim( ) {6 } dim( )
n n

PR f v f

j j j jf v f v

Z j j j
αβγ

= =∑ ∑∏ ∏ ∏ ∏      (3.34) 
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This is the Ponzano-Reggae spinfoam model.  This model can be further discretized and 

simplified by taking the physical length of each segment to be in integer units of a 

normalized Planck length, 1
P

l = : 

 
1

( )

...

v n

N

iS j

PR

j j v

Z e= ∑ ∏  (3.35) 

Returning to the 4-D spacetime manifold case, the intertwiner sums can be generalized to 

the 15-j Wigner symbol (hyper-polyhedron): 

 

Figure 5. Deconstructed 4D hyper-polyhedron intertwiner in 15-j Wigner symbology 
 

to obtain the partition sum for the TOCY (Turaev, Ooguri, Crane, and Yetter) model of  

the BF-Theory of a 4D spacetime manifold triangulation  quantization: 

                
, ,

dim( ) {15 } dim( )
f e f e

TOCY f v f

j i j if v f v

Z j j j
αβγδ

= =∑ ∑∏ ∏ ∏ ∏
                         

(3.36)
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In this partition sum, the set of 2-complexes that are summed over is the 2-skeleton of a 

the dual of a 4-D triangulation, *∆ .  Additionally, the representations, 
n

j , are the unitary 

irreducibles of the group (4)SO and the vertex amplitude is given by {15 }
v

A j= .  Crane 

and Yetter (1997) give a variation on this model that bypasses the condition of infrared 

divergence, that is, of the divergence of the sum (integral) in the sum of paths expression 

due to high energies or phenomena happening at large distances and Barrett (1998) gives 

a formalism for the graph invariant for relativistic spin networks over 4-simplices. 

 The above partition function involves an infinite number of degrees of freedom.  

In order to capture the situation for a true 4-D spacetime spinfoam model, a sum over 2-

complexes must be made in the partition function.  We review the general approach taken 

by the method of group field theory.  To this end define a field ( )gφ on the group (4)SO  

as invariant under the Hamiltonian action H when,  

 ( ) ( ),     g gh h Hφ φ= ∀ ∈  (3.37) 

if and only if its representations, ( , )
f e

j i are irreducible.  Define the Hamiltonian action 

functional under these fields as: 

 2 51
( )

2 5!
S

λ
φ φ φ= +∫ ∫  (3.38) 

and define projection operators,
G

P and 
H

P as: 

 1 2 3 4 1 2 3 4

(4)

[ ( , , , )] ( , , , )G

SO

P g g g g dg g g g g g g g gφ φ= ∫  (3.39) 

 
4

1 2 3 4 1 4 1 1 4 4[ ( , , , )] ... ( ,..., )
H

H

P g g g g dh dh g h g hφ φ= ∫  (3.40) 
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Next, define the new Hamiltonian action based on these projection operators: 

 2 51
( ) ( [ ]) ( [ ])

2 5!
C G G HS P P P

λ
φ φ φ= +∫ ∫  (3.41) 

Now define the expectation value of the transition amplitudes of the spin network, s, 

based on the action operator, ( )
C

S φ , as: 

 ( )( ) ( ) S

s
W s f e φφ φ −= ∫�  (3.42) 

This will then be a well-defined amplitude function of 3-D space models, i.e., Euclidean 

quantum gravity (QG).  What is needed for a relativistic version is a Lorentzian model.  

This can be accomplished by replacing the group (3)SO by the Lorentz group 

(3,1)SO and then considering the two cases (1) fixing the subgroup, (2,1)H SO= or 

(2) (3)H SO=  of (3,1)SO and finally, redefining the Hamiltonian action, ( )
C

S φ , as: 

 2 51
( ) ( [ ]) ( [ ])

2 5!
H G G HS P P P

λ
φ φ φ= +∫ ∫  (3.43)  

 One of the more interesting points about this model is that the field, ( )gφ used in 

(3.43) is essentially arbitrary, i.e., aside from being in the group (4)SO , it may have 

arbitrary behavior.  In particular, in this study, the case for a generalized information 

field, ( )I g , that depends on the group element 
e

g  associated with an edge e of *∆ , will 

be constructed into the 4-D spinfoam model and extended into an arbitrary infinite 

dimensional spinfoam model.  Spin networks, in this framework, will be associated with 

a richer structure that represents information field values with respect to observers and 

transmitters (event generators) of information, i.e., the proposed informaton particle.  We 

next consider the role information can play in LQG. 
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Information and Entanglement in Loop Quantum Gravity 

 After the review of LGQ and spinfoam networks, one may become curious about 

how information manifests itself in such a setting.  Specifically, since the mechanisms of 

LQG and spinfoam networks carry the states of quanta through a relativistic constraint in 

the geometry, quantum information will be investigated in such settings.  The approach 

of Terno and Livine will be used for this exposition (Terno, 2006; Terno & Livine, 

2006a; Terno & Livine, 2006b).  For a spin network and hence a spinfoam, the goal will 

be to develop a definition for the partial trace operator acting on a bipartite subsystem so 

that standard manipulation of entangled elements can be performed.  This will give an 

indication of the potential for accommodating entangled information in spinfoams and 

spin networks.  Start with a spin network, Γ with vertices v and oriented edges e.  For a 

spin network state, an SU(2) representation, labeled ejV , is assigned to each edge e, and a 

SU(2)-invariant linear map that was named an intertwiner, labeled, 

 ingoing  outgoing
: e ej j

v
e e

V V⊗ → ⊗� , is assigned to each vertex v.   

 This is the typical structure of a spin network.  Let { }0  for each statev v≡� � be the 

Hilbert space of intertwiners (one per state) for a given vertex, v.  Next, denote a spin 

network state of Γ as, , ,j ιΓ
� �

where the vectors are the ejV and
v

� components of the 

edges and vertices respectively.  , ,j ιΓ
� �

will in turn, define a function of the holonomies, 

g, along the edges of Γ , given by 
, ,

( )
j

g
ιΓ

Γ � � .  Now fix Γ and its components, ejV and
v

� .  

Form the tensor product space of intertwiners for all vertices as: 0 0
v

v
≡ ⊗� � .  Form a 
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basis state in 0� and label it as 1, ..., vι ι ι=
�

.  The component 
k

ι  represents the 

intertwiners at v.   Form the corresponding function of the holonomies along the edges 

by: 

                                 
1

1 1
( ) ,..., ( )

v
ev v

v
v

SV
j

v e
v e

g g tr D g
ι

ι ι ι
= =

  
Γ ≡ ≡ ⊗ ⊗ ⋅  

  
��

                      
(3.44) 

Here ( )ev

v

j

e
D g is the group of elements of the holonomies of 

e
g along the edges outgoing 

from the same vertex, v.  ( )gιΓ� is then the contraction of these matrix representations, 

1
( )

v
ev

v
v

S
j

e
e

D g
=

⊗ with the intertwiners, 
1

v

V

v

ι

=
⊗ � .  Let 

v
E denote the total number of adjacent 

edges to v.  Let 
v

T be the total number of ingoing edges to v and 
v

S the total number of 

outgoing edges to v.  Then
v v v

E T S= + .
v

E as a function of v is gauge invariant and 

preserves its value under the SU(2) gauge group of v.  In this way, the functions
v

E are the 

analogy of the wave functions for quantum geometry and are called gauge invariant 

cylindrical functions.  In the rest of the discussion, it will be assumed that the intertwiner 

functions are normalized, i.e., 1ι =� and as such 
1 21 2| i ιι ι δ= .  In addition, the factors, 

2 1
j

d j= + are absorbed in the representation matrices.  A pure state in the spin 

network is then expressed as: 
2

,  where 1r rιι
ι ι

ψ ι= =∑ ∑ �

�

�
. 

 One now considers a bounded connected region, B in a closed connected spin 

network with graph, Γ .  Vertices and intertwiners of the sets, int( ), ( ),  and BB ext B ∂  will 

now be defined along with their respective Hilbert spaces in order to define a course-
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graining procedure defining generic patch surfaces on the spin network.  These will, in 

turn, be defined in terms of partial tracing, an operation that defines quantum information 

and entanglement between two quantum subsystems in general (see (3.14)).  Course-

graining in a spin network is the procedure in which a larger region in the spin network is 

patched from smaller ones and the dynamics are redefined to the larger region from the 

smaller patch areas.  Define the following sets: 

 

{ }
{ }

1 2 1

2 2 1

int( ) vertices 

( ) vertices \ int( )

edges | if  and  are ends of ,  int( ),

( ) or int( ), ( )

e e e

e e e

B v B

ext B v B

e v v e v B
B

v ext B v B v ext B

= ∈Γ

= ∈Γ

 ∈Γ ∈ 
∂ =  

∈ ∈ ∈  

∩

 (3.45) 

Define the state of the region B as the tensor product of all the intertwiners of the 

vertices, v B∈ .  Then, the Hilbert space of intertwiners of B is: int( )B B v
v B∈

= ≡ ⊗� � � .  The 

corresponding Hilbert space of ( )ext B is: ( )ext B v
v B∉

≡ ⊗� � .  Lastly, the Hilbert space of the 

boundary, B∂ ,
B∂�  , is defined as the space of intertwiners between the representations 

e
j that are attached to the edges that cross B∂ .  This turns out to be the space of states of 

B when one course-grains B to a single vertex. 

 Consider an arbitrary subset of edges of B, 
B

E , and the group of holonomies 

along those edges, { },e Bg e E∈ .  In general, the parallel-transport dependent boundary 

state is given by: 

              { } { } { }( ) int( )
(2)

 ( ) / ( )e ev e v
j j v

j e B
e B e Int B v B

SU

dg tr D g d D g
ε

∂∈∂ ∈ ∈

 
⊗ ⊗ ⊗ ⊗ ⊗ ∈ 

 
∫ � �   (3.46) 
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where
1 if ( ) ,  (outgoing edge of )

1 otherwisee

s e B B
ε

∈
= 

−
 .  The trace operator is taken over 

all the SU(2) representations, 
ej

V around each vertex v B∈ .  The integration of the tensor 

product integrand in (3.46) over SU(2) implies that it is SU(2) invariant, which, in turn 

implies that it is a bonafide normalized intertwiner operator. 

 Now consider two subsystems, A and B and their tensor product Hilbert space of 

states, A B
⊗� 	 � � .  A basis in � can be formed by the direct products 

A B
mn m m= ⊗ with wave functions, ( )m x x mψ = for A and ( )n y y nψ = for B.  In 

this setting, a general state in � can be expressed as
mnc m nψ = .  We will form the 

elements of a general operator O on � by using the reduced density operator that is 

standard in the development of entangled information and was touched upon earlier in 

this chapter.  First, let ' '' ' mm nnmn O m n o δ= be the (matrix) elements of O.  The partial 

trace operation between A and B can then be defined as: 

 ' ' ( )A

mm mn m nO o c c tr o ψψ ψ ρ= =  (3.47) 

Note that the reduced density operator given by ( )A

Btrψ ψρ ρ≡ is constructed by tracing 

out B, and ' ( , ' )
A

mm mn m nρ ρ= .  The operator O can be expressed as: 

 ( )( , ), ( ', ') ( , ') ( ')O x y x y o x x y yδ= −  (3.48) 

The reduced density operator, ( , ')A x xψρ w.r.t. the coordinates ( , ')x x may then be written 

as: 

 '( , ') ( , ) ( ', ') ( ') ' ( ) '( ')A

mn m n m m
x x x y x y y y dydy c c x xψρ ψ ψ δ ψ ψ= − =∫  (3.49) 
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and the partial trace operator is written as ( , ') ( , ') 'AO o x x x x dxdxψψ ψ ρ= ∫ .  Note that 

we have used the condition that { }nφ is an orthonornal basis.  Then Oψ ψ is the partial 

trace on the space O� , the abstract Hilbert space of operator O states.  Terno considers 

the application of this definition to a class of local operators acting on the vertices of 

spinfoam, Γ which is generalizable to other classes of operators.  This is a formal 

definition of the partial trace operation for entangled subsystems acted upon by a general 

operator on a spinfoam. 

We consider the case of Schwarzchild nonrotating black holes and a spinfoam 

representation with qubits on its surface patches.  A case for rotating black hole 

computation is given at the end of Appendix B.  The case for relativistic quantum 

information independent of the quantum gravity framework was reviewed and 

investigated in Adami (2004) and Bais and Farmer (2007).  However, LQG information 

theory, as discussed here, provides a subsuming conception to that of relativistic quantum 

information. Black-hole information theory, as discussed in Appendix B, is done so in the 

context of quantum gravity and hence serves as a basis for general information in moving 

information containers and organisms.   

We are interested in computing the entropy of such spinfoams and hence of the 

information dynamics on such devices.  Measures of entanglement on the space of 

intertwiners of 2n qubits, in a spin-
1

2
system, 2 2( ) nInt ⊗= C�  in the case of a black hole 

horizon with area, 1/2 2A nα= have been shown to be equivalent.  We will use the 

entanglement of formation as a representive measure of entanglement on this discrete 
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computational space of 2n qubits.  Spin-s systems which represent the patches on the 

surfaces of spinfoams are considered, starting with the spin-
1

2
qubit systems.  These are 

akin to quantum computer registers residing on spinfoams.  In effect, they are LQG 

spinfoam computers.  We are interested in the general information flow in such devices 

as a model for information flow in bi-partite systems such as our informaton model in 

this paper.  The informaton model is a system of bipartite-entangled event-observer pairs 

and as such represent information particles that live by entanglement.  Let 

wα α αα
ρ = Ψ Ψ∑ be a general state expressed as a convex combination of pure 

states.  The entanglement of formation is then expressed as: 

 ( ) inf ( )FE w S
α

α αα
ρ ρ

Ψ
= ∑  (3.50) 

where ( )S αρ is a suitable entropy, such as the von Neumann entropy of the reduced 

density operator, αρ .  Now divide the set of qubits into two subgroups (subsystems), A 

and B of size 2k n< and 2 2n k−  respectively.  The respective Hilbert spaces of states are 

denoted by 2 2( ) k

A

⊗≡ C�  and 2 2 2( ) n k

B

⊗ −≡ C� .  The intertwiner space is then expressed 

as: 

 0
(2 ,0) ( ) (2 , ) (2 2 , )( ),O O

n j k j n k jV Vσ σ σ −= ⊗ = ⊕ ⊗ ⊗�  (3.51) 

where  0
( )jV is the singlet state in the product space, j j

V V⊗ .  Let 

(2 ,0) (2 , ) (2 2 , )
0

k

n k j n k j

j

N c c c −
=

= =∑ .  Denote the basis states of A and B by 

, ,
j

j m a and , ,
j

j m b respectively, where 0 ( ),  j k n k j m j≤ ≤ − − ≤ ≤ and the 
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degeneracy labels,  and j ja b account for the subspaces, j
V .  The intertwiners are then 

expressed as: 

 
( , ) 1

2 1
( 1) , , , ,j j

j
a b j m

j jj
m j

j m a j m b−

+
=−

≡ − − ⊗ −∑�  (3.52) 

One can then express the entanglement of formation of the state ρ by: 

 
1

(2 , ) (2 2 , )
0

( ) log(2 1)
k

F k j n k jN
j

E c c jρ −
=

= +∑  (3.53) 

Consider the limit as N → ∞while equally splitting the subsystems, i.e., 
2

n
k = .  Then 

 
1

lim ( : ) ~ log log
2 2 2

F
N

n m
E k nρ

→∞
= =  (3.54) 

for spin networks with general spin, s.  Terno shows that under general conditions for all 

bipartite partitions of a horizon spin network with large enough numbers of edges and 

general spin, 
1

2
s ≥ , the quantum mutual information between the black hole horizon, A, 

and its component parts, B, equates to three times the inter-component entanglement, i.e., 

 ( : ) ( ) ( ) ( ) 3 ( | : )A B FI A B S S S E A Bρ ρ ρ ρ ρ= + − ≃  (3.55) 

Furthermore, if 
k

C
n

≡ is fixed, as n → ∞ , using a logarithmic correction: 

 3

2
lim ( : ) log
n
k

C
n

I A B nρ→∞

≡

=  (3.56) 

This implies that in a black hole horizon with independent, uncorrelated qubits, the 

entropy scales linearly with the number of qubits in the horizon, 2n.  This correction is 

due to the condition that qubits begin to correlate because of their invariance under 



 

 

87

SU(2).  This is the qubit black hole model of information.  Terno points out that when the 

qubit black hole model starts with one outside segregate pair of qubits, then the fraction 

of unentangled states in the model follows as 
1 3

~
4 8

s
n

+ .  This has possible implications 

for the hypothesis of information loss in black holes and the evaporation model.  The 

consequences of this are that information loss is possible because of the lessening of 

entanglement in such limited segregated start up qubit black hole models. 

 It should be noted that these results are generalizable to the qudit case where the 

dimension of the state space for each spin particle on a surface patch is d.  In this case, a 

singlet state is expressed as: 

 
1

1

... 1
...

1
...

! d

d

i i d

i i

i i
d

ς ε= ∑  (3.57) 

where 
1... di iε is completely antisymmetric and 0,1,..., 1 1dε − = .  The qudits then become SU(d) 

invariant.  The infinite-dimensional case for the state space (and continuous variables, CV 

state space) becomes interesting because it has been posited that in such a setting, 

entanglement sharing becomes readily available to all infinite-state -∞ qudits (Dennison 

& Wooters, 2001).  This means that under a condition of marginal pairwise entanglement 

(i.e., the entanglement of formation measure of the system which is the maximum of the 

minimum entropies between pairs of qudits in the system is sufficiently small), all qudits 

can share entanglement throughout the system.  

 Pérez (2010) develops a scheme in which information from a qubit system, S 

interacts with an environment, E which is considered generally as an n-level quantum 

system, i.e., a qudit. In this method quantum information decoheres into the environment. 
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Partial information from S is then measured using a fraction, F
n

f
n

= of levels from E that 

define a subsystem F.  Mutual information, ( : )I S F is then a partial measurement of the 

information from S.  Decoherence is normally the killer of entanglement. In this general 

case of a qubit and its environment, mutual information can be recovered as an indicator 

of the original quantum information from S.  In the case of informatons in chapter 4, the 

mutual pairs of entities within each informaton can recover mutual information from 

other informaton subsystems that are considered part of their respective environment.  

This is considered a form of quantum Darwinism because observers get information 

about quantum systems through their imprint on its environment.  Zwolak, Quan, & 

Zurek (2009) first coined the term quantum Darwinism to determine the haziness, h of a 

qubit system, S, which by definition is the mutual information (initial mixed entropy) 

gathered about S from a mixed environment E involving S.  The storage capacity of a 

fragment, F of the environment, E which contains the decohered qubit information of S is 

reduced by a factor of 1 h− , where h is the haziness of S.  Haziness then determines the 

capacity to store information about a qubit in an environment or part thereof containing 

it.  We next consider a model for information fields using generalized Bayesian signal 

processing in the form of an information field theory constructed in the tradition of QFT.  

It will be extended to apply to LQG spinfoams, lattice models, and a general uncertainty 

framework to be applied to construct a generalized information field theory for this 

study’s intended information metamodel. 
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Information Field Theory 

 Combining the mechanisms of physical field theories that utilize Feynman’s sum-

of-paths integral definition and the partition function using a Hamiltonian action 

(operator) with classical definitions of a signal process via linear response theory in a 

Bayesian probabilistic setup, an attempt was made to construct an information field 

theory (Enßlin, Frommert, & Kitaura, 2008).  Faraday originally defined the concept of 

physical fields to accommodate the spatial dynamics of electromagnetism (Faraday, 

1839).  A field is constructed on a space by assigning a vector value at each “workable” 

point of that space where workable means computable.  These vectors represent arrays of 

values relating to observables of an entity.  The underlying space may be Einstienian and 

quantum in nature and hence a creditable physical field theory must take into account the 

constraints of such frameworks.  In this work it was assumed that a signal contained 

within the full physical state of a system in spacetime is a representation of an observer’s 

filtration, i.e., is purely the limited part of the system that is of interest to the subjective 

observer.  Additionally, only one data observation is taken and so this technique is not an 

ensemble statistical decision problem as in the derivation of an estimator based on a 

repeated iid sampling.  Let s depict the signal of interest and d the data sample collected 

by the observer.  The signal may be interpreted as a function acting on the state, 

( )s s ψ= .  The linear response model is used by the authors where the data is modeled as 

a response R to the signal s, plus a noise term n, 

 ( ) ( )d R s n s= +  (3.58) 
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The response is then defined canonically as that part of the observed data which 

correlates with the signal.  One expresses this as: 

 
|

( )  [ ( | )] 
dd s

d

R s d d p d s d µ= ≡ ∫  (3.59) 

with the noise simply being the remainder, 
|

( ) ( )
d s

n s d R s d d= − = − .  By this 

definition, the noise component is linearly uncorrelated to s, given the data d, i.e. 

 
† †

| |
( ), ( ) 0 0

d s d s
n s s d R s s s = − = =   (3.60) 

The response function methodology is not diffeomorphic-invariant, in fact, it is not even 

coordinate invariant since for any transformation, T of the data d, if ' ( )d T d= , then 

 

[ ]

' '

|

|

|

( )

( )

( ) ( | )

 ( | )  (in general)

( )

d s

d s

d

d

d s

R s d

T d

T d p d s

T d p d s

T d

T R s

µ

µ

=

=

=

 ≠  

 =  

=

∫

∫
 (3.61) 

Hence, linear response functions are not unique in defining a reconstruction of signals.  

Criteria must then be used in order to differentiate the performance of such 

transformations of data to construct spaces of response functionals.  What is desirable is 

the maximization of the response function, ( )
T

R s corresponding to the data 

transformation T on d.   

 This mapping should also recover (or be as nearly invariant to s) as much of the 

signal as possible, i.e., 
|

( )
s d

T d s≅ .  In this sense, the search for an optimal estimator of 
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the signal based on the observed data and prior knowledge takes on the form of the min-

max problem: 

 
*

*

|
min ( )

max ( )

s dT T

T
T T

T d s

R s

∈

∈

−
 (3.62) 

where *T is the dual space of transformations from the data manifold to the reals.  One 

can combine this problem into a single minimization (or maximization), provided ( )
T

R s  

is not degenerate (or
|

( )
s d

T d s= ): 

 
*

|
( )

min
( )

s d

T T
T

T d s

R s∈

−
 (3.63) 

 Since there is no guarantee in general that this will not happen, approximations to 

this optimization problem are done using variational methods.  One requirement would 

then be that ( )
T

R s is positive definite w.r.t. s, i.e.,
( )

0TR s

s

∂
≥

∂
 so that the response does not 

decrease with an increasing signal.  To minimize 
|

( )
s d

T d s− in 2L , one defines the 

quadratic loss (uncertainty): 

 2 †

|
[ ( )][ ( )]

T
d s

s T d s T dσ = − −  (3.64) 

and the expected value of its square, the trace of 2
Tσ : 

 

[ ]

22

|

2

|

( ) | ( ) |

( )

T x x
s d

s d x x

tr s T d dx

E s T d

σ = −

= −

∫
 (3.65) 

where x is the variable of integration w.r.t. a random variable
'

~ ( | )
dist n

X p s d .   
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 Here x
s and ( )

x
T d both depend on this random variable through the 

posterior, ( | )p s d .  One would then minimize the trace, 2( )Ttr σ over the space of plausible 

data transformations, T.  The authors suggest limiting their search space of plausible 

signal functions on the information state field, ψ  to analytic, linear, and smooth 

operators.  In addition, they suggest choosing a signal such that optimal knowledge of the 

information field can be extracted, in particular when the posterior and prior, 

( | )p d s and ( )p s could reliably give a good approximation to the nature of the information 

fieldψ .  This was made unclear and could be further crystallized through the use of 

optimal statistical estimators such as complete and minimally sufficient statistical 

estimators.  These, however, require repeated quantum experiments.  Nonetheless, in 

general, a signal operator could be a filter applied to an input stream in producing an 

output or in a quantum mechanical setting, a measurement operator of the quantum state 

producing an observation. 
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Figure 6. Quantum information signal processor 
  

 Considering the whole information state variable,ψ , the density function of d can 

be expressed in the tradition of Feynman sum of path integrals (histories) as the sum of 

paths integral over all realizations ofψ : 

 ( ) ( | ) ( )p d p d p d
ψ

ψ ψ ψ= ∫  (3.66) 

See Appendix A for a review of Feynman path histories based on Hamiltonian operators 

and field theory as an alternative to computing quantum states using wave equation 

derivations.  When concentrating on a particular signal functional, s, of the information 

state, ψ , and by utilizing Bayes Theorem, the posterior probability of that signal given 

the data is expressed as: 

 
( )( | ) ( )

( | ) ,
( )

dH s

d

p d s p s e
p s d

p d Z

−

= =  (3.67) 
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where ( | )p d s is the probability of achieving the observed data, d, given a signal s, ( )p s is 

the prior probability of the signal s, ( )p d is the unconditional probability of achieving the 

signal s, ( )
d

H s is the Hamiltonian operator of the signal s, and d
Z  is the partition sum 

for the data state d.  This posterior can also be constructed by a Taylor-Fréchet expansion 

around a suitable field variable t.  The Hamiltonian, dependent on the data d, is expressed 

as: 

 [ ] [ ]( ) log ( , ) log ( | ) ( )dH s p d s p d s p s≡ − = −  (3.68) 

while the partition (also dependent on the data) is written as: 

 ( ) ( | ) ( ) ( )dH s

d

s s

Z e ds p d s p s ds p d
−= = =∫ ∫   (3.69) 

As a convenient tool to compute moments of s, the authors introduce into the definition 

of Z, the moment generating function, J (utilizing the Fréchet partial differentiation 

operations, 
1( )... ( )

n
n F
F

nJ x J x

δ
δ δ

∆ = acting on functions on Banach spaces and write: 

 
†( ) ( )( ) dH s J s

d

s

Z J e ds
− += ∫  (3.70) 

Then the (connected) correlation functions, ( )d

nE s , may be expressed as: 

 1 0( ) ( ),..., ( ) [log ( )] |d n

n n F d Jd
E s s x s x Z J == = ∆  (3.71) 

Finally, the Hamiltonian can be Taylor- Fréchet expanded as: 

 
1

† 1
†

0 ... 1
3

1
( ) [ ( )... ( )]

2 ! n

n

x x n

n

s D s
H s J s H s x s x

n

− ∞

=

= − + + Λ∑  (3.72) 
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where
' ( )

0 log dH s

d

s d

H ds e µ− 
=  

 
∫ ∫ is the normalized Hamiltonian and ' ( )dH s is the 

unnormalized Hamiltonian.  Additionally, d
µ is simply the measure of integration w.r.t. 

the data variable d. 1D− is defined as the quadratic coefficient of the information 

propagator, ( . )D x y that in turn propagates an information field from the signal, ( )s y , that 

is at y, to another location x.  The operators nΛ , act as anharmonic tensors, creating 

interactions between the modes of the free, harmonic theory (Enßlin, et al., 2008).  The 

authors give as their example a Gaussian data model in a free theory (free of 

interactions).  Next, they form the interaction version under the Gaussian model for 

which the above Hamiltonian is split between the free and interacting Hamiltonian parts 

as: 

 1

† 1
†

0 ... 1
3

int

1
( ) [ ( )... ( )]

2 !

( ) ( )

n

G n

x x n

n

G

s D s
H s J s H s x s x

n

H s H s

− ∞

=

= − + + Λ

= +

∑
 (3.73) 

where 0 ( )G
H s is the nonnormalized Gaussian Hamiltonian, ( )GH s the free Hamiltonian 

part and int ( )H s the interaction Hamiltonian.  Using a shifted field, s tφ = − for 

computational convenience, the Hamiltonian can be expressed as: 

 1

† 1
† ' '( )

0 ... 1
0

int

1
( ) [ ( )... ( )]

2 !

( ) ( )

n

G n

x x n

n

G

D
H J H x x

n

H H

φ φ
φ φ φ φ

φ φ

− ∞

=

= − + + Λ

= +

∑
 (3.74) 

where the shifted version terms are: 

             
1 1

† 1
' † ' 1 '( ) ( )

0 0 ... ... 1
0

1
,  ,  and [ ... ]

2 !n m n

G G n m n

x x x x n

n

t D t
H H J t J J D t t t

n +

− ∞
− +

=

= − + = − Λ = Λ∑  (3.75) 
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The partition sum can then be expressed as: 

 
int ( )

( ) ( )
H

J

GZ J e Z J

δ
δ

 −  =  (3.76) 

where 
†( )( ) GH s J s

G
Z J e ds

− += ∫  is the partition function of the free (noninteracting) case. 

Using the Feynman diagrammatic expansions, the logarithms of ( )Z J and hence any 

connected moments are calculated.  Feynman diagrams are constructed from the symbols 

of lines, vertices with line attachments and without line attachments according to the 

Feynman rules: 

1. Open-ended lines represent external coordinates.  In the case of information 

fields, the moments 0

1

[log ( )]
( ) |

( )... ( )

n
n

J

n

Z J
m x

J x J x

δ
δ δ == are coordinate dependent and 

hence must be expressed with open-ended lines. 

2. The propagators, D are represented by a line connecting the coordinates defining 

D. 

3. Vertices with one line attachment represent the expression (1)
' ' 'x x xj J+ − Λ  

4. Vertices with n attachment represent the expression ' '
1

( )

... n

n

x x
Λ  

5. All internal coordinates are integrated over (external coordinates are not) 

6. Each diagram is divided by its symmetry factor which is the number of 

permutations of vertex attachments leaving the topology invariant. 

 This model of an information field presumes a design that involves a linear 

response function, single observation experiments, and a separate signal operator as a 

outside process.  In this proposal, to be expanded in the next chapter, these models will 
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be replaced by generalizations and extensions to include multiple experiments, 

generalized response functions, a signal that will be represented as a physical particle that 

is holistically included in a quantum system, not as a separate observer, and a generalized 

uncertainty framework that will include quantum probabilities as a special case.  

Furthermore, the Hamiltonian operators that are derived from these extensions as 

generators of an information field will be applied in the more general spinfoam 

formalism. 

 With respect to the partition sums, a measure of negative entropy is given by: 

 

1, 0

( ) ( ) log

( ) log ( ,0)

( , )
|

dd

d

J

I d H s Z

H s Z d

F d Jβ
ββ = =

= − −

= − −

∂
=

∂

 (3.77) 

where 
†[ ( ) ]( , ) H s J sZ d J e dsβ

β
− −= ∫  and 

log ( , )
( , )

Z d J
F d J

β
β β

= − .  Fβ is the Helmholtz 

free energy of the system written as a function of the inverse temperature, β .  In terms of 

the generated signal, s, Fβ may be expressed as: 

 int ( )

| ,

1 1
log ( ) log H sG

s J j G
F Z J e β

β ββ β
−

+
= − −  (3.78) 

where the last average is taken over the Gaussian pdf defined as
†[ ( ) ]

, ( ) GH s J sG

J
p s e

β
β

− −∝ .   

 These quantities may be calculated using the Feynman diagrams rules as defined 

above.  With this definition of entropy (Boltzmann-Shannon), one may calculate 

( )I d using some simplifications, such as in the free theory case (no interactions) and the 

underlying Gaussian distribution for the signal: 
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[ ]1 log(2 )

( )
2

tr D
I d

π+
= −  (3.79) 

and the information prior to the data observations as: 

 
[ ]1 log(2 )

(0)
2

tr S
I

π+
= −  (3.80) 

obtaining the information gain from the data as: 

 

1

† 1

†

( ) ( ) (0)

log( )

2

log(1 )

2

log(1 )

2

I d I d I

tr SD

tr SR N R

tr R QR

−

−

∆ = −

  =

 + =

 + =

 (3.81) 

where D is the propagator, R is the response, N the noise, and S, the signal operators 

respectively.  Additionally, † 1
Q RSR N

−≡ , the signal response-to-noise ratio, In this 

manner, the information gained from the data, ( )I d  is dependent on Q and hence on the 

fidelity of the signal.  The fidelity between two quantum information states (pure or 

mixed), commonly called the transition probability between  and ρ ϕ  is defined as: 

 
1/2 1/2( , ) (  )F trρ ϕ ρ ϕ ρ=  (3.82) 

and is a measure of the similarity between  and ρ ϕ  (Petz, 2008, p.83).  F is not a metric 

but can be turned into one using the Bures distance: 

 ( , ) 2 2 ( , )D Fρ ϕ ρ ϕ= −  (3.83) 

It has been shown that an upper bound for fidelity is the so-called super-fidelity defined 

as (Miszczak, Puchała, Horodecki, Uhlmann, & Życzkowski, 2009): 
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 2 2( , ) ( ) 1 ( ) 1 ( )U tr tr trρ ϕ ρϕ ρ ϕ= + − −  (3.84) 

with a general lower bound (subfidelity) of: 

 2 2( , ) ( ) 2 [ ( )] [( ) ]L tr tr trρ ϕ ρϕ ρϕ ρϕ= + −  (3.85) 

 In signal processing, the reconstruction signal taken from the response functional 

given the data is measured and compared to the original signal.  Their similarity is the 

fidelity of the signal reconstruction.  This may also be measured by the quantity Q and 

reframed in the context of , ,  and F U L above in the following sense.  Let ( )sρ ψ=  and 

|
( ) ( )

T s d
R s T dϕ = = .  Then 1/2 1/2( , ) [ R S ]F tr Sρ ϕ = .  In the case of higher order 

interacting theory, the information gain will have a remainder term, 2( )γ
  added above 

in the order of a parameter,γ  that is proportional to the interaction perturbations.  

General definitions of entropy, such as quantum and general uncertainty versions of the 

family of Renyi entropy, Bergmann entropy, von Neumann quantum entropy, and 

theα and β  families of entropies will be designed into this definition for information 

field theory in the next chapter.  The corresponding expressions for fidelity and quality of 

information measurement will follow as well. 

 An information field theory (IFT) can be similarly constructed in the LQG case 

by the use of the Hamiltonian action from (3.43).  In (3.73), the hamiltonian, 0
G

H is 

substituted with the LQG hamiltonian action, ( )
H

S φ .  
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Holonic and Complex Adaptive Systems 

 Although the spinfoam model, information field theory, and digital renditions of a 

universe computer (hypercomputation or Turing) address nonlocal and global 

formulations of entities as reviewed before, the issue of the formation of complex 

systems from microlaws and the bridging to macrolaws is largely missing or 

unconnected.  Can one construct evolutionary rules for complex adaptive systems 

development from general rules for spacetime and information fields? Towards this end, 

the next section will review complex adaptive systems (CASs) and their most currently 

practical models, multiagent ensembles.  To a lesser extent, holonic systems have become 

attractive as a means of describing the organizational behavior of natural complex 

systems.  Holarchies will be combined with multiagent complex adaptive systems 

(MCASs) in the final portion of the review on CASs.  This will set the stage for the 

proposals to be made in the next chapter that attempt to pull together information field 

models as a calculus for constructing general computational holonic multiagent complex 

adaptive systems as models for realistic ensembles and organization. 

 In the vernacular of complex systems theory, a system consisting of multiple 

agents or entities is complex if it exhibits collective behavior that cannot be explained by 

the microlevel rules of its components.  This behavior is at times self-referential, 

emergent, evolutional, self-organized or adaptive.  Therein lay ambiguities to the 

technical definitions of complex systems.  Does one characteristic causally link to 

another or are all of these properties linked to a separate mechanism? In an attempt to 

unify the understanding of properties of complex systems a proposed standard was 
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presented grouping these properties utilizing information theoretic concepts, specifically 

entropy (Prokopenko, Boschetti, & Ryan, 2009).  These authors used classical definitions 

of entropy to define categories of complexity.  Here quantum and more general 

extensions of entropy will be used in that context.  Complex or at least a measure of 

complexity may be viewed as the amount of information needed to describe a system.  

Shannon entropy was proposed to measure this concept for signals in a noisy channel 

defining his famous entropy quantity (Shannon, 1948).  Previous to Shannon’s work on 

entropies for probability distributions, von Neumann (1955) expressed a quantum version 

of entropy for a quantum density operator (matrix), ρ : 

 ( )( ) lnS Trρ ρ ρ= −  (3.86) 

An alternative definition of entropy comes from Rényi and its quantum version is given 

by (Hayashi, 2006, p. 40): 

 1( ) ln ,  1S Tr α
α ρ ρ α− ≡ ≠   (3.87) 

One of the most general definitions for classical entropies comes from Salicru (Salicru, 

1993) who defined the ( , ) entropyh φ − as: 

 ( )( )( ) ( )h
H X h f x d xφ θ

χ

φ µ
 

=   
 
∫  (3.88) 

where X is a random variable distributed by the pdf fθ  (parameterized by θ ),  µ is an 

appropriate measure of integration, χ is the space of possible values of X, : (0, ) ,φ ∞ → R  

: ,h →R R   is differentiableh and either: 

1.  is concaveφ and ' 0h ≥  or 



 

 

102

2.  is convexφ and ' 0h ≤  

 The discrete case can be handled by replacing the integral with a summation over 

the probability space.  Additive entropies can be classified under this very general form.  

Both the classical Shannon and Rényi entropies are special cases of this entropy family. 

These general entropy measures are examples of functionals defined on the space of 

probability distributions of the underlying random variables.  Tsallis studied and 

developed functionals in this manner using the principle of maximum entropy.  Havrda 

and Charv´at before him, published the original version as a theoretical entropy (Havrda 

& Charv´at, 1967).  Tsallis generalized Shannon entropy for nonadditive entropies using 

a parameter q.  The quantum version of this is (Hu & Ye, 2006): 

 ( ) 1
( ) 1 1 ,  0,  1qS q Tr q qρ ρ

−
 = − − > ≠   (3.89) 

the quantum Tsallis entropy of degree q.  The most general version of this form of 

Tsallis-like entropy in quantum systems is called the quantum unified ( , ) entropyq r − and 

is given as: 

 ( )

( ), if 1, 0

( ), if 1, 0

( ), if 1, 1

( ), if 1, 1/

( ), if 1, 0

r

q

q

r q

q

q

S q r

S q r

E S q r

S q r q

S q r

ρ

ρ

ρ ρ

ρ

ρ

 ≠ ≠


≠ =


= ≠ =
 ≠ =

 = >


 (3.90) 

Here 

 ( ) ( )1 1/( ) 1 1 ,  0,  1
q

q

q
S q Tr q qρ ρ

−
 = − − > ≠   (3.91) 

is the quantum entropy of type q, 
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 ( ) 1
( ) 1 ln ,  0,  1q

q
S q Tr q qρ ρ

−
 = − > ≠   (3.92) 

is the quantum Renyi entropy of degree q, and ( )S ρ is the before mentioned von 

Neumann entropy.  Note that
1

lim ( ) ( ),  for 0.r

q
q

E S rρ ρ
→

= >  A class of more general 

functionals on classical probability distributions is the so-called q-expectation given by: 

 ( ) ( ) ,  1,...,q

m mq
u u x p x dx m M= =∫  (3.93) 

where the normalized q-expectation is given by: 

 ( )
( ) ( )

( ) ( ) ,  1,...,
( )

q

m q

m mqq

u x p x dx
u u x k x dx m M

p x dx
= = =∫

∫
∫

 (3.94) 

and the set of functions,
m

u , are akin to energy state levels with the so-called escort 

probability distributions, ( ) ( )
( ) ,  1,...

( )

q
q

q

p x
k x m M

p x dx
= =
∫

acting as the moment functions. 

Statistical estimation based on the Tsallis entropies is known as Tsallis statistics and is of 

importance because it arises and is useful in the case of dimensional reduction in 

quantum gravity black-hole thermodynamics and as a generalization to Boltzmann-Gibbs 

statistics in the case of nonadditive entropies used in the nonextensive statistical 

mechanics of quantum gravity or large range effects (Tsallis, 1988; Cantcheff, & 

Nogales, 2005).  Extensive systems are those in which total system energy is proportional 

to system size.  Criticisms of Tsallis statistics as a means of thermodynamic construction 

of systems mainly point to certain nonphysical conclusions reached by them.  It continues 

to be a controversial theoretical construct with some successful implementations.  
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 This dissertation will develop further generalizations to these entropies and their 

properties in regards to LQG-spinfoam and Zadeh (2005) general uncertainty (GU) 

information models.  Since complex systems consist of multiple entities, their 

interactions are as important as each individual action and as such one would like to 

utilize the concepts of joint and conditional entropies and mutual information of two or 

more quantum random variables.  The joint entropy of two quantum states 

 and ρ σ respectively of two subsystems of a quantum system is defined as: 

 ( ) ( )( , ) ( ) lnS S Trρ σ ρ σ ρ σ ρ σ= ⊗ = − ⊗ ⊗    (3.95) 

where ρ σ⊗ is the joint state.  The conditional entropy of ρ  given σ  written also in 

terms of joint and singular entropies, is defined as: 

 ( ) ( )| , ( )S S Sρ σ ρ σ σ= −  (3.96) 

The mutual information about the quantum state ρ  of one subsystem that remains after 

knowing the quantum stateσ , of a second subsystem written in terms of conditional, 

singular, and joint entropies, is given by: 

 
( ); ( ) ( ) ( , )

( ) ( | )

I S S S

S S

ρ σ ρ σ ρ σ

σ σ ρ

= + −

= −
 (3.97) 

Mutual information is especially useful in signal processing since it presents a concept of 

shared information between a source quantum state, ρ and a receiver quantum stateσ , 

and a means to maximize a signal between the two.  The quantum relative entropy for 

two density operators,  and ρ σ is given by: 

 ( )( ) ln ln
KL

D Trρ σ ρ ρ σ≡ −  �  (3.98) 
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This is called the quantum KL-divergence or relative entropy of  and ρ σ and is a pseudo-

metric.  It can be turned into a metric by considering the symmetrized divergence: 

 ( ) ( ) ( )s

KL
D D Dρ σ ρ σ σ ρ= +� � �  (3.99) 

Divergence distances such as the KL-divergence and its more general f-divergence 

family, are relative entropy measures because they measure the minimum amount of 

information needed to be transmitted to one entity when using a language or code from 

another entity.  Here the quantum version of the  f-divergence between two density 

operators, ρ and σ on � is defined  by: 

 ( )f

d
D Tr f

d

ρ
ρ σ

σ
  =   
  

�  (3.100) 

where f is a convex function such that ( ) 0f =I .  The classical versions were developed in 

(Ali & Silvey, 1966; Csiszár, 1967).  In this regard, an observer would be represented by 

the use of a code with density operator ρ and a system component would be represented 

by the use of a code with density operatorσ .  A divergence is therefore a measure of the 

relative complexity of ρ  relative to σ .  Divergences will be used in the definition of the 

info-macrodynamics of the informaton model to be developed in chapter 4.  Utilizing the 

( , ) entropyh φ − , quantum divergences can be further generalized as: 

 ( )
( ) ( )

2 2

h h

h h
H H

D Tr H
φ φ

φ φ

ρ σρ σ
ρ σ

 ++ = −  
   

�  (3.101) 

where hHφ is defined as in (3.88).  We label these the family of quantum ( ),h φ -

divergences.  
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 The quantum version of Fisher information will now be reviewed in connection 

with showing the Cramér-Rao inequality for quantum systems and hence a lower bound 

on uncertainty in quantum estimation problems.  Consider a random variable 

( ) ( ): , , , , XX P G PΩ →� � defined with the quantum probability rules where M is a 

POVM , i.e., [ ]( , ) ( ) ( ) ,  XP G Tr M G Gθ ρ θ= ∀ ∈ � .  To this end Holevo and Helmstrom 

defined the quantum Fisher information of a quantum system with density operator ρ as 

(Holevo, 2001): 

 ( )
2

2 1
/ /( , ) ( ; ) ( ) ( )

G

i M E l p x Tr m x dxθ θθ θ ρ µ
+

−   = =   ∫  (3.102) 

where l is the score function of the quantum system parameter θ , 

{ }: ( ; ) 0G x G p x θ+ = ∈ > , G is the range space of the quantum random variables and the 

partial differential operation is abbreviated as: 

 [ ] ( )/ ij ijθρ ρ θ
θ
∂

=   ∂
 (3.103) 

An upper bound for ( , )i Mθ was given by (Braunstein & Caves, 1994): 

 2 2
/ / / /( ) ( )I E Trθ θθ ρ ρ θ ρ   = =     (3.104) 

The Cramér-Rao inequality then takes the form: 

 
2 1

( )
( , )

Tr M
i M

ρ θ
θ

≥  (3.105) 

The quantum Fisher information, ( , )i Mθ is interpreted as the amount of relative 

information or relative entropy that grows with small perturbations in the quantum 

system parameter, θ .  This can be depicted as (Shalizi, 2009): 
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 ( ) ( )3
( , )T

D i M Oθ θ ε ε θ ε ε+ ≈ +�  (3.106) 

The quantum Cramér-Rao inequality then gives a lower bound on the growth rate of 

uncertainty in the relative information between a perturbation of a model and itself in a 

quantum system, as transpires in computational-statistical estimation algorithms.  

 Prior to embarking on quantum communication theory, we mention a concept that 

runs antecedent to that of entropy, that of extropy.  Extropy has been popularly defined as 

negentropy or the information content as disorder in a system decreases.  For molecular 

systems this is similar to the concept of potential for life expectation.  More specifically, 

extropy has been defined for systems as the entropy of a Markov chain that describes the 

states of the system.  These definitions are motivated by the setup for a digital 

probabilistic approach to physics (Stonier, 1990, 1992, 1997).  We extend this to 

quantum systems.  In a quantum mechanical system, Q, a Markov chain describing the 

state of a system is a pair ( ),E ρ where E is a quantum channel map :E ⊗ →� � �  

and ρ the quantum state of the system, such that E is a completely positive trace-

preserving map and � the *C -algebra of bounded operators that contain the observables 

operators on the quantum system Q, and satisfies the following: 

 ( ) ( )1 2 1 2 1 2, ,  ,Tr B B Tr E B B B Bρ ρ⊗ = ∀ ∈   �  (3.107) 

(Accardi & Frigerio, 1983).  The extropy of Q , ( )
e

I Q is then defined as the entropy of 

the quantum Markov chain ( ),E ρ that describes Q: 

 ( ) ( )( ) , ln
e

I Q S E Tr E Eρ ρ ρ= = −    (3.108) 
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with respect to ⊗� � .  A generalization of quantum Markov chains to quantum Markov 

fields and entanglement on Cayley graphs has been shown (Accardi & Volterra, 2009).  

A similar extropy definition may be based on such general structures.  Further 

generalizations to GU constraints from the GTU can be made based on the uncertainty 

constraint variables of a GTU.  We now turn to a discussion on abstract communication 

channels. 

 The channel capacity is an upper bound for the rate of communication that is 

possible over a quantum noisy channel and is given by maximizing the quantum mutual 

information over all distributions on the source quantum system.  When information is 

transmitted classically, as in electronic signal transmission through a wire, radio waves, 

or light waves, the medium is quantum mechanical.  In the case the transmitting of a 

classical bit stream through a quantum transmission channel requires two additional 

processes – the encoding of the classical information into a quantum state and the 

decoding of the message by a quantum measurement on output (Hayashi, 2006, p.94).  

This situation is referred to as a c-q (classical-quantum) channel.  To this end define the 

quantum channel as a map, W from an alphabet, χ to the space of quantum states, 

( )
O

S � on the output quantum systems in the Hilbert space O
� .  Let I

� be the Hilbert 

space of the input quantum systems.  Define the map, : ( ) ( )
I O

S SΓ →� � as the state 

transmission channel from the input to the output quantum systems.  Define 

( ) ( ( )),  W x x xρ χ= Γ ∈ .  Next define the transmission information: 

                  ( , ) ( ) ( ( ) || ( )) ( ( )) ( ) ( ( ))
x x

I p W p x D W x W p H W p p x H W x
χ χ∈ ∈

≡ = −∑ ∑  (3.109) 
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where the average state ( )W p for the c-q channel W is: 

 ( ) ( ) ( )
x

W p p x W x
χ∈

≡∑  (3.110) 

Define a code as a triplet ( ) ( , , )N
N YϕΦ = where N is a natural number that is the size of 

an encoder, :{1,..., }Nϕ χ→  is a map corresponding to the encoder, and Y is a decoder 

which is a set of positive Hermitian operators 1,...,{ }i i NY Y == such that 
1

N

i

i

Y I
=

≤∑ .  Then by 

a theorem of Holevo, Schumacher and Westmoreland, the c-q channel capacity 

( )
c

C W satisfies (Holevo, 2001; Schumacher & Westmoreland, 2001): 

 
†

( )( )

( ) ( ) sup ( , ) min sup ( || )
O

c c x
Sp x

C W C W I p W D W
σχ χ

σ
∈∈ ∈

= = =
��

 (3.111) 

where ( )χ� is the space of all distributions on the space of alphabets χ and the c-q 

channel capacity, ( )
c

C W is defined as: 

 
( )

( ) ( )

{ }

1
( ) sup lim log : lim [ ] 0

n

n n

c
n n

C W
n

ε
→∞ →∞Φ

 = Φ Φ =  
 (3.112) 

with the dual capacity defined is: 

 
( )

( ) ( )

{ }

1
( ) sup lim log : lim [ ] 1

n

n n

c
n n

C W
n

ε
→∞ →∞Φ

 = Φ Φ <  
 (3.113) 

Note that ( )
c

C W is an additive operator on the space of quantum channels while the 

transmission information operators ( , )I p W are subadditive. 

 For quantum transmission in a quantum channel with entanglement, a general 

result by Devetak gives: 
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1

( ) lim max ( , )cQ I
ρ

ρ
⊗

⊗

→∞ ∈
=

�
�




� �
� �

�
 (3.114) 

where ( )Q � is the full quantum channel capacity of a quantum channel � , and 

( , ) ( ( )) ( [ ( )])cI S S tr Uρ ρ ρ⊗
⊗ ⊗= − 



 


�
� � is the coherent information withU ⊗
�

being the 

isometric extension of the composite quantum channel ⊗
� of � quantum copies of a 

quantum system (Devetak, 2008).  The mapping : ( ) ( )B Bρ σ→� � � , maps bounded 

linear operators on the Hilbert spaces of the input and output quantum systems  and ρ σ  

respectively.  

 Returning to the discussion on proposals to define a common structural 

framework for complex systems, Prokopenko, et al. define the equivocation of a receiver 

quantum state, ρ  about a source quantum state,σ as the conditional entropy, ( | )I ρ σ .  

Additionally, the entropy, ( )I ρ is an indication of the diversity of the quantum state, ρ .  

The mutual information, ( ; ))I ρ σ can then be expressed as the difference between the 

quantum receiver’s diversity and the equivocation of the quantum receiver about the 

quantum source.  The c-q channel capacity, ( )
c

C W of the quantum channel defined by the 

quantum receiver stateσ and source quantum state, ρ  represents the maximization of 

( ; ))I ρ σ over all possible distributions of the classical signal source.   

 In the glossary of network theory, assortiveness between two nodes, 1 2 and x x is a 

measure of reciprocity in the sense that highly connected nodes connect with other highly 

connected nodes or in the opposite side of this spectrum with other low connected nodes.  

Equivocation of ρ aboutσ is then equated with nonassortiveness between the two in a 
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network node setting.  Hence, in a connected network graph, ( | )I ρ σ is a measure of 

connections that are of dissimilar degrees or, in a sense, surprise connections between 

entities.  Prokopenko, et. al use an argument made by Solé and Valverde that ( | )I ρ σ can 

be interpreted as a noise factor that affects the overall assortiveness of the (quantum) 

network in the sense that it adds to a measure of (quantum) network heterogeneity 

without contributing to (quantum) network information (Solé & Valverde, 2004).  In 

essence, the gist of the argument is that in order to maximize channel capacity (c-q 

channels), 1( ,, , , )
n

I ρ ρ for an n-node quantum network, the diversity in the form of joint 

node entropies, 1( ,,, )
n

S ρ ρ , should be maximized while the set of joint node 

equivocations (joint node conditional entropies): 

 
1` 1

( | ( , , , ), , 1, , , 1)
ni j j kS j i k nρ ρ ρ

−
≠ = −  (3.115) 

should be minimized.  Their respective arguments were in the case of classical entropies 

and systems.  Here, more general quantum versions have been extended.  In the next 

chapter, quantum entanglement will be considered and general uncertainty operators will 

further extend these concepts.  The vague concept of complexity may now be viewed as 

the maximization of channel capacity. 

Complexity 

 Prokopenko, et al. outline the differences in various analytic definitions of 

complexity including those of Solomonoff-Kolmogorov-Chaitin (SKC algorithmic 

complexity) and statistical complexity involving information theoretic concepts mainly 

entropic measures.  Algorithmic complexity is defined as the shortest program needed as 
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computed by a universal Turing machine to reconstruct a system, a deterministic 

approach (Chaitin, 1987).  Formally, if s is a system described by a bit stream and d(s) is 

a description of that system as an algorithm to be executed in a universal Turing machine, 

then the SKC algorithmic complexity is given by ( ) min ( )
s

L
d D

K s d s
∈

= where L
D is the space 

of all plausible description programs (algorithms) using a language L executed in a 

universal Turing machine applicable to the system s. ( )
L

K s is dependent on the language 

L, but an upper bound can be established with respect to the length of the system s, that 

is,  a constant , ( )Lc K s s c∃ ∋ ≤ + .  The description operators d may also measure the 

time to compute the system s, the time complexity.  A quantum version of L
K was 

established.  In this definition, quantum Turing machines (QTM) replace universal 

Turing machines, qubit streams replace bit streams, and quantum programs replace 

classical programs or algorithms.  

 

 Definition (Quantum Algorithmic Complexity).  Let M be a QTM, 

*1 {0,1}
( )ρ +∈ � � , a finite length qubit string.  Define the finite-accuracy quantum 

complexity written as ( )MQC
δ ρ , ( )l σ the length of a quantum program defined on the 

Hilbert space of quantum states *1 {0,1}
( )σ +∈ � � and ( )M σ the output of the quantum 

programσ , then: 

 ( ) min{ ( ) : ( ) }M tr
QC l Mδ ρ σ ρ σ δ≡ − ≤  (3.116) 
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where 
1 1

( )
2 2 itr

i

tr λ⋅ = ⋅ = ∑ , and i
λ are the eigenvalues of the operand, i.e., is the norm 

metric defined by the trace distance (Benatti, Kruger, Muller, Siegmund-Schiltze, & 

Szkola, 2006). 

 Statistical complexity attempts to define the minimal length program that 

stochastically describes a system.  There are various flavors of a stochastic approach to 

describing a measure of length or time computation of a system.  Entropic measures are 

usually used in these approaches.  One approach is to describe the complexity of 

monotonically and successively increasing subsystems of a system through the use of its 

entropy (Shannon or others, such as the Renyí entropy) and examining the limit of such 

entropies towards the entropy of the entire system (Grassberger, 1989).  They are mostly 

interpreted as measures of the average memory of the configuration of a system (Feldman 

& Crutchfield, 1998).  Computational approaches to statistical complexity include the 

statistical logical depth which is the average time required for a universal Turing 

machine to compute or describe a system, assuming an Occam’s razor assumption of the 

simplest possible computation in such estimation (Crutchfield & Young, 1989).  An 

example of a modified statistical complexity is a measure proposed by L`opez-Ruiz, 

Mancini, and Calbet that takes into account disequilibrium, later modified by Feldman 

and Crutchfield to distinguish structure within a category of disorder (preventing over-

universality), and presented here in the quantum version (proposed in the next chapter): 

 1/( ) ( ) ( )
LMC KL N

C s S Dρ ρ ρ= �  (3.117) 
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where KL
D is the quantum KL-divergence (relative entropy), 1/ N

ρ is the state density 

representation of a uniformly mixed state of N states, and s is a system of N iid quantum 

states (L`opez-Ruiz, Mancini, & Calbet, 1995; L`opez-Ruiz, 2002; Feldman & 

Crutchfield, 1998).   

 Recall that the quantum KL-divergence is given by: 

( ) [ (log log )]
KL

D trρ σ ρ ρ σ= −� .  An approach based on computational -machinesε was 

given by Shalizi (2001) and Crutchfield and Young (1989).  In this method, one considers 

a data stream with infinite past and future halves (bi-infinite), 1 1(..... , , , ,.....)
t t t

s s s s− +=  

taking into account a prior probability for future values, ( )futurep s  and a conditional 

probability for future values given past values, ( | )future pastp s s .Let ( )pasts t denote the past 

half infinite subsequence 1(..... , , )
t t

s s−  and ( )futures t denote the future half infinite 

subsequence 1( ,.....)
t

s + .  For a given time step t, an equivalence class t
�  and relation 

c
≈  

are then formed based on the past history subsequence states ending at t: for a step time u, 

where u t≠ , 

            ( ) ( )  ( ( ) | ( )) ( ( ) | ( )),  past past future past future past future
c

s t s u p s t s t p s u s u s≈ ⇔ = ∀  (3.118) 

( , )t
c
≈� form an equivalence class of past history subsequences and are referred to as 

causal states.  For fixed future horizon t, one may consider finite length members of 

( , )t
c
≈� of differing length �  and denote a class partition, ( , )L

t
c
≈� as those members of 

( , )t
c
≈� with length L≤� .  Denote by � the set of all causal state classes ( , )t

c
≈� .  These 
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notions can be expressed for general stochastic processes as well.  Now for each causal 

state ( , )t
c
≈� , attach the conditional probability of the futures based on the past histories of 

that causal state, i.e., ( | )future pastp s s  where ( , )past t
c

s ∈ ≈� .  These distributions are unique 

to the causal state and are referred to as their morphs.  Next, examine the transitions from 

one causal state to another.  A new causal state can be created from an old one by simply 

observing the next random variable 1t
s + and building a new past history equivalence. 

 Definition. (Causal Transitions). The transition probability of proceeding from the 

causal state i
� to the causal state j� while emitting or predicting the value s is given by: 

 
1

( ) '( , | )s

ij j i
T p s

→

≡ = = =� � � � �  (3.119) 

where '� is defined as the successor causal state to the current causal state � and
1→

� is the 

one-step future causal state (Shalizi, 2001).  From this, an -machineε is defined: 

 Definition ( -machineε ). The pair ( ) ( , ( ))
c

M s T sε = ≈ , where 

( )( ) { : }s

ijT s T s= ∈ � and � is the set of all possible values taken on by the stochastic 

process ( )
i i I

s s ∈= is called an -machineε for the stochastic (general) process s. 

 Let µ be the underlying measure for the quantum stochastic processes involved.  

It was shown that (1) -machineε are Markovian, (2) causal states are minimal sufficient 

statistics for predicting futures of stochastic processes, (3) the statistical complexity, 

( ) ( ) log ( )
i

i iC S p pµ
∈

= = −∑
� �

� � � as defined by the entropy of the probability distribution 

of the stochastic process is equal to the statistical complexity of the stochastic process, 
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( )s
 and (4) causal states are maximally accurate predictors of a minimal statistical 

complexity of the underlying stochastic process, (5) through the use of -machinesε , its 

transition probabilities construct an invariant probability, ( )p �  on the space of causal 

sets, � , and (6) 

 ( , ) ( ) log ( )
i

i iI C p pµρ ρ
∈

≤ = −∑
� �

� �  (3.120) 

The quantum version of an interesting measure of the rate of growth or decline of 

entropies of quantum processes is given by: 

 
( )

lim ( ) lim[ ( ) ( 1)] lim
L L L

S L
s s L S L S L

L
µ µ→∞ →∞ →∞

= = − − =  (3.121) 

where ( )S L is the block quantum entropy of length L subsequences within a data stream 

measured in qubits and is given by: ( ) log
L

L

L LS L tr
ρ χ

ρ ρ
∈

= − ∑ , where Lχ is the space of 

length L quantum processes.  sµ is called the quantum entropy rate for a quantum process 

sequence s.  An interpretation of sµ is that it estimates the information-carrying capacity 

in ( )S L that is not random, but is actually correlated locally and hence measures local 

predictability going from one sequence length L to another.  The quantities, 

( )s L sµ µ− then measure a version of the irreducible amount of randomness left after 

correlating in the L length sequence.  Now define the excess entropy as the sum of these 

quantities over all lengths L: 

 
1

( ) ( ( )) ( )
L

E S L sµρ ρ ρ
∞

=

= −∑  (3.122) 
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( )E ρ may then represent the amount of irreducible randomness left after accounting for 

all correlations.  The excess entropy is a measure that operates on bi-infinite sequences as 

above.   

 In this paper, the quantum version of the excess entropy is proposed.  The 

relationship between the mutual information between the bi-infinite past and future 

subsequences, the excess entropy and the quantum entropies is: 

 ( ) ( , ) ( ) ( | )E I S Sρ ρ ρ ρ ρ ρ= = −  (3.123) 

This is in direct analogy to the classical version of excess entropy (Crutchfield & 

Feldman, 2003; Crutchfield & Wiesner, 2007).  In terms of quantum positive operator 

valued measures (POVMs) on the future quantum processes given the past and the future 

prior, labeled as |  and 
future past future

M Mω ω ω respectively, and qubit stream lengths, L, the 

predictive information measure is given by: 

 
|( )

( , ) log
( )

future past

future

pred

tr M
I L L

tr M

ω ω

ω

ρ

ρ
=  (3.124) 

where the average is taken over the joint quantum distribution of the past and future 

values, |( )
future past

tr Mω ωρ , L is the length of the observed past state values and L is the 

length of the observed future state values.  Note that ( , ) ( , ) 0predI L L I ρ ρ= ≥ and 

that ( , )I ρ ρ is sublinear. 

 A further generalization of causal states involving spacetime considerations, that 

is, using causal light cones instead of general processes was given by Shalizi, Shalizi & 

Haslinger (2004).  In this setup one considers fields, ( , )x z t
�

, defined on spacetime 
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coordinate space, an ( 1)-Dn + manifold, Λ  (here a manifold is used to bring in diffeo-

geometric considerations later), with coordinates, ( , )z t ∈Λ
�

.  Define the past light cone of 

( , )x z t
�

, [ ( , )]L x z t
− �

, as the totality of all points 1( , )x z u
�

that could, within light-speed 

propagation, c, influence ( , )x z t
�

.  More specifically, 

 { }1 1[ ( , )] ( , ) : , ( , ) (L x z t z u u t D z z c t u−
Λ= < ≤ −

� � � �
 (3.125) 

where ()DΛ is a divergence defined on Λ .  One defines the future light cone, [ ( , )]L x z t
+ �

 in 

an analogous manner: 

 { }1 1[ ( , )] ( , ) : , ( , ) (L x z t z u u t D z z c u t+
Λ= > ≤ −

� � � �
 (3.126) 

[ ( , )]L x z t
+ �

 represents those points of Λ that could be influenced within light-speed 

propagation, c, by ( , )x z t
�

.  Define ( | )p L L
+ − to be the conditional distribution of future 

light cone configurations given the configuration in the past.  Now define an equivalence 

class of past light cones: 

 { }( ) : ( | ) ( | )L L l p L l p L Lε − − + + − ≡ = =   (3.127) 

Consider the mutual information: ( ( ); )I L Lε − − .  Finally, define the statistical complexity 

of the field configuration as: 

 ( ( ); )sC I L Lε − −=  (3.128) 

It was shown that the statisticε  is the unique minimal sufficient statistic for estimating 

the minimal amount of information needed to predict the dynamics of a system given the 

past of that system (Shalizi, Shalizi & Haslinger, 2004).  Note that s
C takes values in the 

order spectrum of systems.   
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 However, for systems that are (i) completely disordered, i.e., independent 

processes or (ii) completely ordered, i.e., are deterministically constant, 0
s

C = .  In 

general, s
C → ∞  for a system as the amount of information required to describe its 

behavior increases.  In this study, a general quantum-relativistic model via spinfoams will 

be applied to the above generated causal state mechanism and subsequent -machineε . 

Self-organization 

 Self-organization is the next trademark of complex systems.  What does it mean 

for a system to self-organize or to exhibit self-organization from an information-theoretic 

complexity point of view? Self-organization in open thermodynamic systems equates to 

the controlled, efficient release of energy in building internal structure (Kaufmann, 2000).  

This definition links living with nonliving self-organizing systems.  The consensus 

among complex system theorists and the proposal that this study presents is that self-

organization is the mixture of (i) the absence or relative low levels of external influences 

in building system complexity— the main premise of autonomous systems, (ii) an 

increase in order—a measure of increase in structural complexity, (iii) system robustness 

and adaptability—resilience, and (iv) interaction—connectivity and relational linkage 

(Correia, 2006).  Prokopenko, et al. use predictive information, predI  and statistical 

complexity to set conditions for increasing order by first defining information and 

complexity incremental differences respectively: 

      ' '
2 1 1 2 2 2 2 2 1 1 1 1( , , , ) ([ , ],[ , ]) ([ , ],[ , ])pred predI t t T T I t T t t t T I t T t t T t T∆ = − + − − − +  (3.129) 

 2 1 2 1( , ) ( ) ( )sys sys sysC t t C t C tµ µ µ∆ = −  (3.130) 
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where '
2 1  and , 0t t T T> >  are two times and time interval lengths respectively and  

( )sysC tµ is the statistical complexity of the system at time t.  Then one has the conditions, 

 2 1( , ) 0sysC t tµ∆ >  (3.131) 

 ( )2 1 1 2, , , 0I t t T T∆ >  (3.132) 

for increasing order.  Now let 2 1 2 1( , , , )ext
I t t T T  depict the amount of exogenous 

information that can influence (change the complexity of) the system at those two times 

and within those two time increments.  Then define an autonomous system as one that 

satisfies the condition: 

 2 1 2 1 2 1 1 2( , , , ) ( , , , )ext
I t t T T I t t T T< ∆  (3.133) 

for all quadruplets 2 1 1 2( , , , )t t T T .  This may be too strong of a condition for autonomy. One 

may then relax it by prefacing that for autonomous systems condition (3.133) eventually 

be satisfied for all future time pairs 2 1( , )t t past some finite time, *
t .  Now let 

2 1( , )extC t tµ depict the amount of statistical complexity introduced exogenously between 

the times 2t and 1t .  Then, for autonomous systems: 

 2 1 2 1( , ) ( , )ext sysC t t C t tµ µ< ∆  (3.134) 

This inequality may be interpreted as the condition that the internal complexity of the 

system at time 2t increased by more than what could have been added to the system 

exogenously before that and after time 1t —so called spontaneous information dynamics 

produced by self-organization. 



 

 

121

Robustness 

 Robustness is a condition of re-stabilization under perturbative actions, that is, an 

invariance to system perturbations (Adami, 2005, p. 1).  This invariance to system 

perturbations, either exogenous or indigenous, is within the framework of the original 

system’s general behavior and morphology.  Adami considered biological systems in his 

definition of robustness, concentrating on the fitness, survivability, and reproducibility of 

systems as the key entities of robustness under the perturbative actions of genetic 

operations.  For general systems, one is inclined to consider any information structure or 

substructure of the system for robustness with perturbations arriving out of the interaction 

with other systems or of the universe outside of the system.  Prokopenko, et al. attempted 

to quantify this condition by proposing that robustness implies that a system weaves in 

and out of stages in which information transfer within channels increases, that is, when 

() 0sys
I∆ > where dominant patterns are exploited and assortative noise is relatively low 

and those stages where () 0sys
I∆ < , i.e., when alternative patterns are explored and 

assortative noise is relatively high (Prokopenko, et. al, 2009).  In this respect, robustness 

is described by the dynamical nature of the excess entropy ( )E ρ in a general quantum-

relativistic system.  This aspect will be investigated in the next chapter as pertains to 

spinfoam quantum-gravity models.   

 A general stability condition is much stronger than robustness because it implies 

the existence of a limiting state probability distribution as t →∞ .  In this case, a proposal 

for stabilization was made by Briscoe and DeWilde in the situation involving a system of 
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Markovian multiagents, each with state probabilities of t

Xp and the degree of instability 

defined as: 

 ( ) logins x x

X

d H p p p∞ ∞ ∞= = −∑  (3.135) 

where lim t

x X
t

p p∞

→∞
=  is the limit distribution of the occupation probability sequence, 

1( | )t t

x Y

Y

p p X Y p −=∑ , X is the space of values for agent states and Y is the space of values 

for the system state, as a whole (Briscoe & De Wilde, 2009).  The multiagent system is 

considered to be self-stabilizing if xp
∞ exists and is nonuniform, i.e., ∃states, 1x  and 2x  

1 2x xp p∞ ∞∋ ≠ .  This model takes into account the environmental pressure of the system on 

each agent, in essence, the effect of the whole system on each component.  The 

quantity ins
d is simply the entropy of the limiting agent state probability.  If one considers 

more general systems, such as stochastic quantum systems, then the quantum entropy 

growth rate, sµ , that was described before, would define an analogous degree of 

instability.  If a quantum system consists of multiagent quantum subsystems, then the 

definitions of the transition probabilities could account for the effects from the total 

quantum system state, redefining the entropies involved and hence the mutual 

information transfers and excess entropies.  Robustness would define a sort of cyclic or 

wobbly (semi-) stability of a system where the fitness of that system would be stable via 

the quantum entropy growth rate, however, in route towards a limit, the general structure 

may change via the intermediate changing of the excess entropy measure of information. 
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Interaction 

 Interaction within a system was defined by Correia as the minimization of local 

conflicts producing global optimal self-organization, yielding evolutionary stability 

(Correia, 2006).  Minimization of local conflicts is reflected by a measure of 

nonassortativeness, that is, by minimizing the noise in the information channels between 

agents of the system.  Again, this equates to the minimization of the joint equivocations 

between agents in the system written as the conditional entropies: 

 ( )
1 1

| ... ,  ,  1,..., 1
ni j j k

S j i k nρ ρ ρ
−

≠ = −  (3.136)  

Simultaneous to this minimization is the maximization of the diversity of the system 

represented by 1( ,,, )
n

S ρ ρ , the joint entropies.  This results in an attempt, once again, at 

maximizing the excess entropy and the subsequently defined system predictive 

information ( , )I ρ ρ . 

Emergence, Self-asssembly, and Evolution 

 Emergence in systems is the capability of those systems to exhibit novel behavior 

at various scales of observation or resolution, such as spatio-temporal, measurement 

precision or structure type and size, which may not be directly explained from a 

hierarchical causality emanating from those scales or levels.  In the extreme, strong 

emergence means that the whole is greater than the sum of its parts.  Hence, strong 

emergence is the proposal that emergence cannot be explained by any examination of 

lower levels from the level where emergence is manifested.  Weak emergence is then the 

phenomenon of studying microbehaviors and understanding their collective manifestation 
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as a starting point to the the higher level emergence.  In organizations (organisms), this 

behavior may arise from a coalition of networked tasks.  Macroscopic emergence is 

usually not defined directly by microscopic activity and vice-versa.  Normal human 

observation takes place at mesoscopic levels, that is, at levels compatible with biological 

filtering and spectra, both below cosmological scales and above quantum fluctuations.   

 Anthropomorphically, emergence at mesoscopic scales equates with sensorial 

manifestations such as consciousness, stimuli from human senses, and social interaction.  

This is generalizable to any scale or level at which observers or SASs live.  Quantum 

mechanically, this means that a POVM operator is applied to the state space that exist and 

is appropriately defined for that level.  The properties of complexity and organization of a 

system are considered to be subjective by leading systems and complexity theorists 

(Crutchfield, 1994).  Hence emergence, which will be proposed to emanate from 

complexity and organization, is subjective as well, according to this doctrine.  

Notwithstanding, this, there are those that argue for the objective nature of emergence-

emergence happens without an observer (Corning, 2002).  Moreover, the concepts of 

strong and weak emergence are not the issue.  The whole is not only more than the sum 

of its parts—it is distinctly different from it.  Emergence may be understood better by the 

interactions and structure of components, but also by the interactions with the system’s 

environment at the scale of emergence.  Why should emergence be relegated to a limited 

group of scales? In other words, an emergent at any particular scale may be defined by a 

plausibly infinite number of scales at work – infinite interactions at all scales propagating 

to form the “life” of a particular emergent, at a particular scale.   
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 Emergence is essentially a special case of synergism – the ability for two or more 

components to collaborate to form or display a new type of behavior or ability not 

possible by individual means within their scale.  Nevertheless, these manifestations are 

contributed to from the emergent properties of quantum phenomena (microscopic 

effects), as upward feedback, and cosmological perturbations (mega-macroscopic 

effects), as downward feedback.  The rules or laws for an integration of these levels is 

what is missing.  Quantum gravity (GR)  is an attempt to model both predominant 

theories of physical presence.  However, no mesoscopic bridge has been formulated that 

joins these rules together at the boundaries of scales.  In chapter 4 a version of an analytic 

attempt to do this, utilizing information-entropic rules will be given.  

 That withstanding, what is the form of these feedback mechanisms? The course-

grained answer to this is information transmission.  To this end, one may ask, How may 

one use information-theoretic notions to investigate emergence? The second question 

may be, since emergence is relative to the observer, can a mesoscopic view be developed 

for emergence? This second question begs a follow-up question, what is the mesoscopic 

mechanism that will simultaneously make ostensible macro and microemergence at the 

mesoscopic level? 

 To answer this, Prokopenko et al. used the idea of two levels or categories of 

emergence from Crutchfield (1994).  Crutchfield proposed two levels of expressions of 

emergence: pattern formation and intrinsic emergence.  Additionally, Crutchfield defines 

how emergence could be recognized as a conceived and ostensible novel behavior.  

Pattern formation or emergence of patterns is the process of viewing a system externally 
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by an observer of a pronounced developing novel pattern of behavior or structure.  

Intrinsic emergence is the detection of an emergence of system wide behavior by internal 

agents through coordinated behavior of that system from the acknowledgement of a 

system-wide or global measurement functional and by utilizing local connection 

mechanisms to actuate reactions to that system global measurement.  Pattern formation is 

highly observer dependent.  The mechanics of the contributing microscopic components 

do not causally link to the novel emergence as a new categorization of the system.  How 

are macropatterns gleaned upon by the observer in their respective scale environment? 

The observer possesses a filter spectrum applied to signals emanating from the observed 

system.  If information about the system’s structure is contained in the noise component 

of the filter model, then no such structure will be discovered.  

 Emergence arises at different scales as discussed above.  However, because 

pattern formation may be observer dependent or intrinsically defined by whole system 

effects on local causality, the level in which to observe emergence becomes important.  

Practically speaking, emergent patterns may be masked by observer bias.  Hence, it may 

be advantageous to define more objective measures that endeavor to predict emergent 

behavior.  This was the approach taken by Shalizi (2001) and promoted by Prokopenko, 

et al.  Using a computational mechanics approach as in defining -machinesε , Shalizi 

defined the efficiency of prediction of a system. Here we extend that to define a quantum-

stochastic version: 

 
pred

E
e

C

µ

µ

=  (3.137) 
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where Eµ is the excess entropy of a quantum system and Cµ is its stochastic complexity.  

Prokopenko, et al. described this as a ratio of a measure of how much of the system can 

be predicted divided by a measure of how difficult it can be to predict.  System 

predictability is then increased in three separate scenarios: (i) Eµ is larger (more predictive 

power), (ii) Cµ is smaller (easier to predict), or (iii) Eµ is smaller by an appreciably lesser 

amount than Cµ is larger.  Levels of an organization such as a CMAS or what we will 

investigate later, a HMAS, can be seen as a scale at which functional synchronization and 

homogeneity takes place.  This is a caricature characterization of levels of multiagent 

systems, but it will suffice for this purpose.  The level at which prede
 
is optimal with 

respect to all other levels of organization is the level at which to attempt to build a 

predictive model for emergence.  More precisely, if L is the number of levels of an 

organization, 
 , lEµ

 and lCµ


 are the efficiency and statistical complexity at level l 

respectively, and the predictive efficiency at level l is given by: 

 
l

l

l
pred

E
e

C

µ

µ

=








 (3.138) 

then the optimal level, *
l  in which to model predicting emergence in 
 satisfies: 

*

1,...
max l l

pred pred
l L

e e
=

=


 .  A problem with this approach is that the levels of a system may also be 

observer or model dependent and so, the system structural model may also mask inter-

level causality or hidden scale levels.  Emergence may happen between and within 

defined levels of organization.  Emergence is then a relative phenomenon.  All emergent 
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behavior may not be visible by this cadre of observer filters.  Patterns of emergence are 

then gestalt experiments.  

An approach to patterning which leads to a definition of emergence using 

psychological filters will be considered (Goertzel, 1994).  We begin with a formalization 

and modification of Goertzel’s nonmathematical definition of patterns.  A quantitative 

measure of structure of a component and system must be attempted in order to define a 

measure of emergence.  Measures for structure of a component will be given by the set of 

all patterns of that entity.  A pattern, in this respect, is simply a representation of the 

entity whose complexity measure is at most, that of the component itself. 

Definition. (Pattern) A pattern, ( )
PAT

f x of an entity, x is a process (map) that 

results in x, that is, that computes x entirely, such that if C is a complexity measure then 

 ( ( )) ( )
PAT

C f x C x<  (3.139) 

Goertzel’s original definition took a computational complexity view.  In it a pattern, 

( )
PAT

f x , of the entity x, is a self-delimiting program which computes x on a universal 

Turing Machine (UTM), U from an input sequence, (...000 000...)z such that if l is a 

length metric on sequences of symbols, then 

 [ ] [ ] [ ]( )PATl f x l z l x+ ≤  (3.140) 

 In this paper, a generalization to program length, the complexity measure, is utilized in 

our definition of patterns.  The statistical complexity, Cµ  is used.  A further generalization 

would involve a quantum process in which a pattern would be an operator, C
F acting on a 

quantum state space, � such that ( ) ( )( )CC F Cµ µρ ρ≤ for a density operator ρ .  In a 
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discrete setting for this quantum statistical complexity, the pattern computes on a 

Bernoulli-Turing Machine (BTM) and guesses each consecutive qubit.  Recall that a 

BTM is a UTM with a random register that accommodates simulating a Bernoulli time 

trial (random coin flips), t
B  and hence a random process with respect to a computational 

process.  The qubit’s superposition state can then be computed with this random 

simulator.  We will discuss a slightly more general version of this in the form of qubit 

computation on an LQG-computer simulated on a fuzzy sphere in chapter 4 and mention 

GR-inspired computers on black holes in Appendix B. 

Definition. The relative complexity of a pattern, ( )
PAT

f x  of x relative to x is given 

by:  

 ( ( ) | ) ( ( ), )
PAT PAT

I f x x D f x x=  (3.141) 

 where D is a divergence measure in the space of entities of a system. 

Definition. The intensity of a pattern, ( )
PAT

f x  in x is given by: 

 
( )

( ( ) | ) 1 PAT
PAT

f x
It f x x

x
= −  (3.142) 

Definition. The structure of an entity x, denoted by ( )St x is the set of all patterns 

of x, 

 ( ) { ( )}
PAT

St x f x=  (3.143) 

Definition. The structural complexity of x, acts on the space ( )St x and is defined 

as: 
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( ( ))
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m n
j j

k k
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S

p p

C St x
m

∈ == ∈

 
−  

 =

∑ ∑∪ ∩

 (3.144) 

where m is the number of patterns of x, i.e., ( ( ))m Card St x= , j

kp is a distinct pattern in an 

ordering jP of patterns in ( )St x and jP is the jth ordering of {1, 2,..., }m in the number of 

distinct orderings of sets in ( )St x . 

This definition of structural complexity is a mathematical formulation of casuality 

(Goerztel, 1997, p.19-20).  Structural complexity of x preserves additivity because each 

pattern contributes nonredundantly within ( )St x and represents an “average” composite 

pattern complexity.  An associated definition of emergence between two entities follows. 

Definition. The emergence of two entities, x and y, denoted by ( , )Em x y is the set: 

 ( , ) ( ) ( ) ( )Em x y St xy St x St y= − −   (3.145) 

where ( )St xy is the structure for the juxtaposition of x and y (Goertzel, 1997, p. 20). 

Goertzel described this definition of emergence as a gestalt of x and y in the 

following sense: ( , )Em x y is the gestalt of x and y consisting of all patterns in the whole 

of x and y minus the patterns of x and y individually.  Interestingly a gestalt may be 

established between a contained observer and a subsystem component.  By this definition 

of an emergence set for two components of a system, if ( , )Em x y = ∅ then the 

juxtaposition or merging of x and y produce no new holistic patterns separate from those 

found individually in x and y.  Emergence as a set operator then involves a new kind of 

set logic for the usual disjunction (union) and conjunction (intersection) connectives that 

Boolean logic is not sufficient to build with.  These inherent structures of x and y and the 
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pattern definitions dictate that set operator.  This emergent-based logic is an example of a 

para-consistent and multivalued logic that is shared with quantum logics. 

 Other definitions of emergent systems have involved computational criteria.  One 

such definition labels a computationally, thermodynamically, or relative-to-a-model 

emergent phenomena as one in which the optimal means of prediction is through 

simulation.  The condition used is ( ) ( )u n s n≥ where ( )u n is the amount of computation 

(information complexity) needed to calculate predictions for a system of size n when one 

has perfect knowledge of some part of the system and ( )s n is the amount of computation 

needed to simulate the system and arrive at a prediction of the emergent phenomena with 

totally unknown structural information.  A phase change in the phase transition diagram 

of the system happens when these values coincide.  An emergence ratio, 
( )

( )
optu n

s n
ξ = is 

given where ( )optu n is the optimal (minimum) amount of computation needed to predict 

future states of the emergent phenomena of the system, i.e., ( ) ( ) ( )optu n u n u n≤ ∀ .  The 

quantity,
log

log n

ξ
ζ = − is referred to as the emergence coefficient.  Finally, a measure of 

emergent understanding is given by the relative understanding, 
( ) ( )

( )
optu n u n

s n
λ

−
= .  For 

an emergent system, 0λ ≤ and the best understanding is achieved when 0λ = (Darley, 

1994).  The set of possible ( )u n are given by the set of possible understandings of the 

system.  These measures give a way of categorizing emergent systems through given 

“knowledge scenarios” of the structure.  
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Other categorizations of emergent systems for simpler structural families have 

been given, most notably by Wolfram using the mechanics of cellular automata.  

Wolfram (1983) classified emergent cellular automata into the types: (a) homogeneous, 

(b) periodic, (c) chaotic, and (d) complex.  This classification is subsumed by the more 

general taxonomy of attractors as precursors to emergence: (a) fixed point, (b) simple 

limit cycles, (c) quasi-periodic cycles, and (d) strange attractors.  However, this 

categorization of emergence is defined on a continuum. 

Natural specializations of cellular automata are classes of mass agent system 

behavior such as insect (locust, bee, and ant), bird, animal, or human crowd group 

optimization.  In these scenarios, groups of biological species exhibit emergent behavior 

based on a finite set of local rules and a sometimes limited amount of self-awareness.  

These individual behaviors can be represented by a set of local rules as in the more 

general setup for cellular automata.  Three such universal rules of engagement for agents 

in biological group optimization which include ant optimization have been posited by 

Reynolds (1987) in his famous Boid agent model.  They are (a) threshold attraction or 

avoidance to neighbors (no bumping into neighboring agernts), (b) alignment with or 

movement of direction with neighbor subgroups (go in the average direction of the local 

agent neighborhood, and (c) attraction to or movement to a local averaged position (go to 

a local neighborhood average position.  In addition, as in the case for ant colonies, a 

sense of self-awareness is also present as in the feedback mechanism of pheromone 

detection from other ant agents.  
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These rules have been modified to take into account the scale of the mass of 

agents, that is, the threshold of group awareness of neighboring agents as influenced by 

the density of the agent system (Parrish & Viscido, 2005).  The role of information 

transmission between biological agent systems can be encapsulated by this set of 

algorithms and feedback (both positive and negative) mechanisms.  Emergent behavior is 

manifested through events such as cascading and group patternization.  Novel levels of 

organization are created.  In this way, new forms of information are also created because 

the pattern created is interpretable only through a novel vocabulary that is necessary on 

the new levels. 

A generalization of these multiagent systems collectively displaying emergent 

behavior and computational prowess is particle swarm optimization (PSO).  Adaptability 

has also been introduced into a PSO model (Zhan, Zhang, Li, & Chung, 2009).  Since 

adaptive particle swarm optimization (APSO) exhibits the most general model of swam 

intelligence, we review this model in terms of information transfer.  In a classical version 

of APSO as depicted in (Zhan, et al., 2009), with each particle in a swarm, are associated 

velocity and position vectors respectively, 1,..., D

i i i
v v v =   and 1,..., D

i i i
x x x =   for D-

dimensional spaces.  We correct here for a unit discrepancy and time step absence in the 

ESE model of Zhan, et al. Let N be the number of particles.  An evolutional state 

estimation (ESE) model is introduced: 

                  
1 1 1 2 2

1 1 1

( ) ( ) ( ( ) ( )) ( ( ) ( ))

( ) ( ) ( )

k k k k k k k k

i j i j b i j i j n i j i j

k k k

i j i j i j j

v t v t c U x t x t c U x t x t

x t x t v t t

ω+

+ + +

= + − + −

= + ∆
 (3.146) 
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where ω is an inertia weight, , 1,2
i

c i = are acceleration coefficients, 1 1j j jt t t+ +∆ = − is the 

(j+1)
th time interval, [ ]~ ( 0,1 ),  1, 2,  1,...,k

iU U i k D= =  uniformly distributed random 

numbers, ( )k

b i jx t is the position with the best fitness found up to the current evolution and 

( )k

n i jx t is the best position in the neighborhood for the ith particle’s kth coordinate at time 

step jt .  Best in this sense may be a global or local optimum.  Genetic and fuzzy version 

of the inertia weight ω  have been proposed in order to tune the stability and search 

capabilities of this model.  However, an adaptive version of ω will be reviewed.  To this 

end, define the distance measures between particles that are instrumental in displaying 

the three rules of Reynolds.  Define the mean distance of all particles from the lth particle 

at the time step jt by: 

 ( )2

1 1

1
( ) ( ) ( )

1

N D
k k

l j l j j j

j k
j l

d t x t x t
N = =

≠

= −
− ∑ ∑  (3.147) 

Denote by ( )g jd t as the globally best particle w.r.t. the measure (3.147).  Let 

max
1,...,

( ) max ( )j i j
i N

d t d t
=

= and min
1,...,

( ) min ( )j i j
i N

d t d t
=

= .  Now define the evolutionary factor, f  

by: 

 min

max min

( ) ( )
( )

( ) ( )
g j j

j

j j

d t d t
f t

d t d t

−
=

−
 (3.148) 

In this definition, [ ]( ) 0,1f t ∈ .  Finally, define an adaptive sigmoidal version of ω as: 

 ( ) ( )

1

1
f t f t

e
βω

α −
=

+
 (3.149) 
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Zhan, et al. experimentally set 1.5α = and 2.6β = .  In this setup, [ ]( ) 0, 4, 0.9f tω ∈ and is 

initially set to the maximum, 0.9ω = in the evolutional process.  The accelerator 

coefficients, ,  1,2
i

c i =  represent the “self-cognition” and “social influence” respectively 

of the particles.  Self-cognition means the propensity of a particle to go to its own 

historically best position, therefore aiding in finding local niches and global diversity of 

the swarm.  Social influence means the ability of a swarm to move towards the current 

globally best region and acceleration to convergence to a best solution of the task of the 

swarm.  In the model of Zhan, et al. the acceleration coefficients are utilized in order to 

enter into convergence, exploitation, exploration or jumping out (of local optima) 

regimes before applying the inertia weights, fω  to an elitist particle-the particle with the 

globally best particle.  In summary, in an APSO model, information is transmitted via 

local and global particle rules, including self-cognition and social influence and the 

tuning from the acceleration coefficients which may be viewed as exogenous influences, 

e.g, from an external observer to the swarm organization.  

Here we introduce further adaptation by varying the acceleration coefficients 

based on observer and evolutional states.  Then we have the acceleration coefficients 

given by ( ( )),  1,2ic f t i =  which are dependent on the evolution factor,  f.  Moreover, we 

introduce a quantum version of the APSO model (3.146): 
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( )( )
( )( )

1 ( )

( )

1 1

( )
2 2

1 1
0

1 1 0

( ) ( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( ) ( )

j

j

j j i j f t i j
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+

= ⊗
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�

�  (3.150) 

Here, at time step 
j

t , 
j

U is an evolutional operator defined by the first expression, 

D is a diveregence measure between quantum states, ( )
i j

tρ is the quantum state for the ith 

particle, ( )
b j

tρ is the quantum state for the best fitness particle, and ( )n

i jtρ is the quantum 

state of the particle with the best fitness in the neighborhood of the ith particle.  This 

quantum setup deserves closer scrutiny because of the implied nonlocality of 

entanglement of particles.  A neighborhood in this sense is redefined to mean an 

entanglement neighborhood.  Proximate particles are more likely to produce 

entanglement than distance ones during the early steps of evolution.  However, as time 

passes, these entanglement neighborhoods expand.  The quantum evolutional operators, 

j
U may be further generalized to include GTU-operators as defined by Zadeh (2005) 

GTU constraints.  This sets up general uncertainty operators which include fuzzy logic 

operators utilizing Lukasewicz operations.  These will be discussed further in our 

treatment of GTU operators for the info-macrodynamic model in chapter 4.  A 

generalization to this setup is the set of evoloutional operators defined in the spirit of true 

physical evolutional processes in biology.  This is developed in chapter 4 as well. 
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In addition to the capability of verifying and categorizing emergent systems, the 

descriptive power of metapatterns of emergent systems is all important.  Several useful 

metacategorizations of emergent systems, notably, poietic systems have been proposed in 

various fields.  Poiesis is the process of manufacturing and producing components, their 

relations, and their organization within a system.  Course limit delineation has been 

posited by Dempster as follows. Autopoietic systems generate their organizational 

structures in a strictly autonomous manner (Dempster, 2000).  They may nonetheless 

receive input from outside the boundaries of their system, but these inputs do not directly 

affect their internal organizational apparatus.  Sympoietic systems, in contrast, are open 

to outside influences in forming these organizational possibilities.  These are essentially 

subjective descriptions because the mechanics of changing boundaries and patterns of 

organization of a system from outside influences can be blurry.  

Now consider systems exhibiting self-organized criticality (SOC).  These systems 

organize their patterns of behavior based on autonomous microstates of behavior and an 

ensuing macrodynamics based on power laws of distribution, fractality, and 
1

f
(pink) 

noise (Bak, Tang, & Wiesenfield, 1987).  Self-organization of critical phase transitions, 

transpire in a phase space region existing between stable and chaotic regions while in 

long transient periods.  Random external perturbations may cause avalanche phenomena 

and so they are both independent in organization, but dependent on external perturbative 

energy.   
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Power laws are probabilistic rules governing the occurrence of entities described 

by bidirectional exponential distributions, i.e.,
1

( ) ,  
C

P w w
w

µ±

±
+= → ±∞ (Sornette, 2004, 

p.116).  Power laws exhibit both self-similarity and scale invariance.  Pink, fractal 

or
1

f
noise is exhibited by the behavior of its power spectral density following the 

proportional relation 
1

( )S f
f α

∝  where 0 2α< < , but usually 1α ≈ .  These are directly 

related to fractional Brownian processes (Mandelbrot & Van Ness, 1968).  SOC systems 

have internal thresholds that govern when the system “breaks out” into a critical phase 

transition or avalanche.  Bak has posited that SOC is a natural maximization of 

complexity (Bak, 1999).  Both poietic system types build internal components based on 

feedback mechanisms and as such are self-organized.  Quantum versions of criticality 

and 
1

f
noise have been proposed in Pitkänen (2001). 

Autopoietic systems are characterized by closed boundaries and limited lifecycles 

in evolution.  Sympoietic systems develop open or more fuzzified boundaries and are 

more capable of sustained lifecycles.  The mechanism of receiving input information 

from outside of a boundary is also differentiated, but somewhat vaguely described in the 

literature.  Reproduction is also slightly different.  In autopoietic systems, the prodigy are 

different systems than the parent, while in sympoietic systems, the prodigy may be the 

same or different systems from the parent.  
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Dempster pointed out a final delineation between these poiesis types with regards 

to self-organization.  Autopoietic systems depend on a stable or predictable input from 

outside their boundaries while sympoietic systems depend on uncertainty and a 

continuous process of adaptation from outside their boundaries.  Additionally, sympoietic 

systems are combinations of two types of self-organization, creative and transmitted, 

while autopoietic systems perform creative self-organization.  Creative self-organization 

refers to a reorganization based on nonequilibirum conditions in dissipative systems, such 

as physical chemical systems (Prigogine, 1984).  They depend on counteracting 

influences between components and when that tension is released, the emergence may 

also be.  Transmitted self-organization refers to reorganization based on information-

dependence from within and outside.  Sympoietic systems confront uncertainty in their 

surrounding environment at their boundaries in fully adaptable manners, while 

autopoietic systems, while maintaining the ability to adapt, have a smaller space of 

possibilities in this regard because of the limited information exchange at the boundary.  

A very broad, but related measure of complexity within a hierarchy is that of 

decomposability.  Systems are decomposable if they can be divided into identifiable 

parts.  They are nearly decomposable (ND) if their parts are not completely independent 

(Simon, 1969).  Because there is a continuum of system independence, ND may also be 

measured on a spectrum.  Alternate definitions of ND include the follow: a complex 

system is ND if it can be decomposed into subsystems that are delineated by different 

frequencies of connectivity.  ND may be structural (physical connectivity) or functional 

(processes).   
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More specifically, modularity is the notion that inter-system level interactions are 

small in number or sparse in comparison to intra-system level interactions.  Subsystems 

defined as such are the modules of a complex system.  Modules are also characterized by 

their lower, but not eliminated dependence on outside systems.  In this regard, modules 

may be a way of defining a level of a holarchy.  Modularity depends on the quantification 

of independence.  For example, subsystems may be structurally modular through the 

observation that they have stronger intra-module dependencies than inter-module ones 

while simultaneously being functionally nonmodular.  Stability is oftentimes used as a 

benchmark property of dynamic systems.  Stability means the relative or eventual 

nonchanging aspect of the state of the system.  Dependency can be defined with respect 

to stability.  In an Ising model for a network of particles, the update rule for a state of a 

particle is usually in the form of the average sum of the contributing or connecting 

particles’ states.  For example, if ( )i tψ depicts the state of the ith particle of a quantum 

state at time t, then

( )

( ( ) ) i

j

j N

i

i

t

P t
N

ψ
ψ ρ ∈= =

∑
, where

AG
N is the set of indices of all the 

inter-system connecting particles to the ith particle.  The stability at time t of a subsystem 

may then be defined as the probability that no subsystem particle changes state at time t.   

In a free-energy measure of an Ising model, independence of probabilities for 

each particle’s state change can be assumed.  Hence, the subsystem, A has stability at t 

given by: 

 ( ) ( ( ) ( 1) )
A

t j j

j N

S A P t tψ ψ
∈

= = −∏  (3.151) 
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where
A

N is the set of indices of particles belonging to A.  Conditional stability can be 

calculated as well.  For example, let ( | )
t A B

S G G denote the stability at time t of the 

group
A

G of “characteristic” A, given the state at time t of group
B

G of characteristic B.  

Then 

                       ( )( | ) ( ) ( 1) | ( ) :
B

GA

t A B j j k k G

j N

S G G P t t t k Nψ ψ ψ ρ
∈

= = − = ∈∏  (3.152) 

where
AG

N and
BG

N are the set of indices of the particles that belong to the groups 
A

G  and 

B
G  respectively.  Let

AG
MS be the number of maximally stable configurations of the 

group (subsystem) 
A

G .  Let 
G

M be the total number of distinct configurations in that 

same group.  Then
A

G is said to be decomposable if 
A AG G

MS M< .  If 1
AG

MS = ,
A

G is said 

to be separable.  If 1
A AG G

MS M< < then the group,
A

G exhibits modular interdependency 

(Watson, 2003).  The concept of modular interdependency then provides a gradation of 

modularity, that is, a relative measure of the degree of intra-dependency versus inter-

dependency in modules of hierarchies that can be utilized in holarchies, as well.  Watson 

(2002) developed the notion of compositional evolvability to describe the capability of a 

system that has strong inter-modularity to evolve, even with the heuristic that systems 

that are not decomposable are not evolvable because of lack of independence between 

modules.  In compositionally evolvable systems, modules can adapt to each other so that 

intra-module evolution occurs based on recombining fitness benefits from other modules.  

Again, this sets a precedent to develop a spectrum for measuring evolvability of a system 
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with respect to decomposability, inter-modularity and intra-modularity.  This is a finer 

grain metric for evolvable complex systems. 

 Remodularization is the dual concept of (1) component type reduction (functional 

and structural) as higher order systems become built from lower order ones, and (2) as 

higher-level systems arise, lower-level components become more differentiated and so, 

more intermediate component types arise as well (McShea & Anderson, 2005).  As 

higher-level systems arise, the lower-level components that aid in building such systems 

may become less in diversity because the higher-level component gains the functionality 

that those lower-level components have specialized in.  Hence these lower-level 

component specialists become less vital in the functioning of the higher-level component.  

There are socio-cultural and cell-biological examples of such phenomena.  This matter is 

less prevalent with functional remodularization.  In cell biology, intermediate types to 

organ cells are skin and tissue cells.  The second concept of remodularization then states 

that as higher-level components become more functional and larger in size, more 

diversity in cell types is produced within that higher-level component, in addition to the 

manifestation of more intermediate components, i.e., those between the higher-level 

component and the contributing lower-level ones.  Both these changes in 

remodularization take place within the lower-level to higher-level regime, normally one 

level. 

 Systems which possess poiesis may be capable of self-assembly.  Self assembly is 

the ability to built novel subsystems within a systems environment from multiple parts.  

More specifically, 
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Definition. Self assembly is the process in which spontaneous formation of 

organized structures from many discrete components, in a possibly disordered system, 

through a stochastic process, is reversible, and can be controlled by a proper design of 

those components, the environment, and the driving force (Pelesko, 2007, p. 5).  When 

local interactions dominant this process, sympoiesis reigns.  Otherwise the system is 

mostly autopoietic. 

There are at least three separate categories  of self-assembly, (a) static – 

assemblies that result in structures that are in local or global equilibirium, (b) dynamic – 

assemblies that result in structures that have stable nonequilibiriums, and (c) 

programmable – assemblies that carry information about the destination structure or 

function of that assembly.  Pelesko points to four characteristics of self-assemblying 

systems, followed by both organic and inorganic structures (a) structured particles 

(components) that take part in the assembled structure, (b) binding forces that act upon 

those particles in the process, (c) an appropriate or proper environment that nurtures the 

dynamics, and (d) a consistent driving force partaking in that dynamic.   

Pelesko stops short of pronouncing that the minimization of energy is a consistent 

dynamic of self-assembling systems because some natural systems are dissipative 

systems.  Nonetheless, energy dynamics play a dominant role in natural systems of self-

assembly, witness (a) the minimization of surface tension in bubble formation, (b) helical 

formation and free energy of rod configurations in nucleic acids (DNA and RNA) and 

protein structures, (c) chemical kinetic energy configurations in polymer formation, and 

(d) the energy systems of waterbug models.  These structures are mimicked by 
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engineering models depicting different tile patterns such as Wang tiles and the use of 

universal graph grammars (Pelesko, pp. 211-251).  In particular, the study will utilize 

information transfer across tiling systems in order to direct self-assembly.  This is a novel 

approach to tiling and it’s self-assembling prowess.  As an introduction, a definition of 

some recent general tiling approaches will be given based on the original tiling system 

idea. 

Definitions. A Wang tile, t is a unit square defined by the quadruple 

( , , , )
n e s w

σ σ σ σ ,each subscript denoting the directional side, north, east, south, and west 

respectively of the square and the type of glue on that side.  Each glue is taken from an 

alphabet, Σ of glue types.  A null glue type, denoted by null will be included in Σ .  Define 

the glue complexity by the cardinality 1g = Σ − .  The functions, north(t), east(t), south(t), 

and west(t) will denote the glue types on those particular sides of tile t.  A tile system is 

an ordered triple ( , , )T G τ where T is a tileset (distinct tiles), 2: {0,1,..., }G τΣ → is the glue 

function, and 0τ > is the temperature.  G is associative and ( , ) 0 G null x x= ∀ ∈ Σ .  In the 

standard model, ( , ) 0,  if G x y x y= ≠  and ( , ) {1, 2,..., }G x x τ∈ .  The tile complexity of the 

system is given by the cardinality T .  A configuration is a partial 

function 2: Z { }C T empty→ ∪ where{ }empty is a special tile that has the null glue on each 

of its four edges.  The shape of a configuration C is the set of positions ( , )i j that do not 

map to the empty tile (Demaine, et al., 2007).  
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Figure 7. Self assembling tiles 
 

Definition. A tile t T∈ is attachable at ( , )i j to C if: 

(1) ( , ) empty, andC i j =  

(2) ( ,south( ( , 1))) ( , west( ( 1, )))

      ( , north( ( , 1))) ( ,east( ( 1, )))    ,  for some 0
n e

s w

G C i j G C i j

G C i j G C i j

σ σ

σ σ τ τ

+ + + +

− + − ≥ >
 

If t is attachable to C at ( , )i j then the process or act of attaching is a means of producing a 

new configuration from C such that the empty tile at ( , )i j is replaced by t (Aggarwal, et 

al., 2004). 

Definitions. An adjacency graph denoted by
C

G of a configuration C is defined 

by: (1) vertices ( , )i j such that ( , )C i j empty≠ and (2) an edge exist between the vertices 

1 1 2 2( , ) and ( , )x y x y  if and only if 1 2 1 2 1x x y y− + − = .  A supertile is a maximal 
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connected subset '
C

G G⊆ such that, for every connected subset H, if '
C

G H G⊆ ⊆ , 

then '
H G= .  If S is a supertile, denote by S (size of S) the number of nonempty positions 

(tiles) in the supertile.  If every two adjacent tiles in a supertile share a positive strength 

glue type on abutting edges, the supertile is fully connected (Demaine, et al., 2007).  A 

supertile S, whose graph is a subgraph of another supertile, '
S is a subsupertile of '

S .  A 

cut of a supertile is a cut of the adjacency graph of the supertile.  For each edge,
i

e in a 

cut, define the edge strength
i

s of
i

e to be the glue strength of the glues of the abutting 

edges of the adjacent tiles corresponding to
i

e .  The cut strength of a cut, c is then the 

sum of glue strengths
 : i

i

i e

s∑ for all edges
i

e of c. 

Definitions. An assembly is produced by growing a supertile, starting with a tile s 

at (0, 0) .  Another tile, t T∈ which is attachable at ( , )i j can be added to s, increasing the 

size of the beginning supertile.  This process can be continued until no further tiles can be 

added and the resultant supertile is said to be terminally produced.  Now consider an 

arbitrary shape, S.  If a tile system, Γ uniquely terminally produces a supertile with shape 

S, then Γ is said to uniquely produce shape S.  The tile complexity of S is given by the 

minimum tile set size necessary to uniquely assemble S under a given assembly model 

(Aggarwal, et al., 2005). 

Counting times have also been developed for tiling systems.  With each 

tile t T∈ associate a nonnegative probability ( )P t such that ( ) 1
t T

P t
∈

=∑ .  The 

distribution ( )P t models the concentration of tile t in the tiling system.  Self-assembly 
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corresponds to a continuous Markov process in which the states map to derived supertiles 

and the initial state 0x maps to the seed.  The probability ( )P t is the transition probability 

of going from a supertile without tile t to a supertile with tile t.  If the tile system uniquely 

produces a terminal supertile,
T

S , then the process of self-assembly is a Markov chain and 

the time to reach
T

S can be treated as a random variable.  Let T be such random variable.  

Then the expected value, ( )E T is called the running time of the self-assembling process 

(Cheng, et al., 2004).  In thisdissertation, emergence is embedded in self-assembly so that 

the glue function, G, strength thresholds,τ , and other parameters of alternative tiling 

models to be reviewed below have corresponding quantum general uncertainty stochastic 

processes.  For example, a stochastic process,
t

ψ satisfying a quantum-general uncertainty 

Ito stochastic equation is substituted for the deterministic glue function, G.  These 

generalized processes will be developed in more detail later in this section. 

Some generalized models of tile self-assembly have been given by Aggarwal, et 

al.  In the multiple temperature model, the lone temperatureτ is replaced by a sequence of 

temperatures, 1{ ,..., }
k

τ τ .  This k-phase model assembles in the following manner: in 

phase 1 use temperature 1τ until no more tiles can be added, then iteratively in phase i use 

temperature
i

τ until no tiles can be added or removed.  If no more additions or removals 

can be done, regardless of the choice of tiles, then the tile system terminally produced the 

shape assembled.  If under any circumstance of tile phase iterations, the process always 

ends with a unique terminally produced supertile R, then the tile system is said to 

uniquely assemble the shape R under the k-temperature model.  In the flexible glue model, 
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the restriction ( , ) 0G x y = for x y≠ is removed.  There may be gradations of glue value.  In 

the unique shape model, a tile system uniquely produces a shape S if the only terminal 

supertiles produced by the tile system are of shape S.  In the q-Tile model, tiles are 

allowed to combine into larger supertiles of size at most q before being added to the 

growing seed supertile (Aggarwal, et al., 2005).  The authors then show a general 

procedure to build arbitrary  x k N rectangles.   

More general models of assembly are given such that intermediate assemblies can 

be stored for later use.  These staged self-assembly models utilize bins for storage of 

unused supertiles and stages for measuring the time required by an operator to perform 

the experiment.  Here, unused supertiles can be “washed away” from the experiment or 

recombined with other unused supertiles into bins for later use.  Bin and stage 

complexities are then calculated as added computational limits in the tile assembly 

experiment (Demaine, et al., 2007).  Mathematical tile systems generalize the idea of 

regularized self-assembly of parts into more complex systems.  The issues of information 

content and self-assembly potential in different CASs will be addressed in the author’s 

dissertation.  In addition, general mathematical models of molecular, DNA, and viral self-

assembly will be addressed in review and in the context of information exchangeability in 

the dissertation (Twarock, 2004).  These self-assembly systems will all serve as natural 

models of generalized organism reproduction and self-assembly in view of dynamic 

complexity. 

One of my proposals is a general definition of information and exchange functors 

in a topoi of CASs that would more objectively delineated poiesis and other delineations 
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of complex systems, such as modularity.  The spectra of poiesis, modularity, and 

decomposability define the true possibilities of real systems, not the extremes of 

autopoiesis, sympoiesis, strict decomposability and strict modular independence.  Hence, 

these gradations of systems should be treated as measures of inter-system information 

exchangeability.  More particularly, exchangeable information may be composed into a 

part that strictly affects the building of components and a part that strictly affects building 

the relationships between components, the organizational pattern.  These information 

subspaces may overlap and the overlap may be treated as a DNA-like subsystem of 

information.  Additionally, these information pipes will be subdivided according to 

whether they are (a) DNA-like, as discussed, (b) epigenetic (nonDNA), (3) behavioral, or 

(d) symbolic.  These evolutionary subdivisions have been posited as a new 4-dimensional 

approach to heredity, superseding the normal gene theory (Jablonka & Lamb, 2005, pp. 

1-4).   

Different levels of a system will be categorized based on their respective 

similarities in (a) phenotype, i.e., functional type, (b) local topology, (c) relationship or 

clique space type, i.e., what neighbor-component types do they connect highly to, and (d) 

information reception type, i.e., what information pipe types do they connect to.  These 

information types and exchangeability criteria may be viewed as functors and natural 

transformations between topoi of CASs or more general systems.  Despite the diversity of 

information, observation-dependency persists.  An information measure should then be 

relative to the observer.  Hence, each information measure should have a corresponding 

comeasure with respect to the observer topoi, in the form of either another component or 
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a separate observer who is now part of the info-holarchy as posited by the timeless 

thermal-time hypothesis and Bohmian interpretations of QM.   

Nonlinearity, Chaos, and Fractal Information 

 After the general discussion on emergence and information, a particular type of 

emergent behavior stands out in scientific investigations of nonlinear phenomena.  One 

intriguing categorization of nonlinear behavior is that of singularities and multibranching, 

commonly referred to as deterministic chaos.  Stochastic chaos will be discussed later in 

this section.  In this sense, deterministic chaos captures the dynamics of a process that are 

separate from randomness, but that cannot be adequately predicted by a model.  Note that 

linear systems cannot be chaotic.  Henri Poincaré is credited with the discovery of chaotic 

processes when he investigated the three-body problem in which the dynamics of three 

separated bodies affect each other in complex fashions.  Nonperiodic orbits in the phase 

space of a three-body system dynamic were observed in which neither a monotonic 

increase in magnitude nor convergence to a fixed point was observed.  This in-between 

behavior in orbits of a nonlinear dynamic system was the first characterization of chaotic 

processes.  Its generalization, the n-body problem, produces chaotic behavior through 

gravitional attraction.   

Moreover, deterministic chaotic systems display sensitivity to initial conditions 

that lead to disparate differences in long term behavior given small perturbations in these 

initial conditions.  However, this is not a necessary and sufficient condition for chaotic 

systems.  Two conditions subsume the sensitivity condition for deterministic chaos.  They 

are (a) topological mixing, and (b) its set of periodic orbits are dense.  If only sensitivity 
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to initial conditions and topological mixing are present then a system is called weakly 

chaotic.  We will define what these conditions mean.  Intimately involved in chaotic 

behavior are the structural properties of fractals and general self-similarity.  In this 

discussion we pay closer attention to the informational aspects of these dynamics in 

transmission and object communication within a general system. 

 Consider a general stochastic process, ,  
t

S t T∈ for some time index set, T. 
t

S is 

assumed to model the state evolution of some subsystem S in the universe.  More 

generally, one can consider a quantum or Zadeh GTU process as will be discussed later.  

Consider general iterated maps as a model for describing deterministic 

chaos,
1

( )
n nt t

S F S
+

= .  The most utilized and popular example of such an iterated map is 

the celebrated logistic map given by: 

 ( )1 1n n nx rx x+ = −  (3.153) 

with 0r > characterizing its behavior.  Feigenbaum began his investigation of chaotic 

behavior using the map: 

 ( ) 1
r

f x xµ= −  (3.154) 

Let 0ε be the amount of uncertainty or perturbation at the initial condition, 
0t

S .  The 

evolution of this perturbation is then given by 
0 0( , )

k t
M S kε ε= , where 

0

1

0

( , ) ( )
i

k

t t

i

M S k J S
−

=

= ∏ and ( )
it

J S is the ith Jacobian of F along the k steps of the trajectory.  

By taking the singular value decomposition (SVD) of M, T
M U V= Σ where the diagonal 

entries of the middle diagonal matrix, Σ are given by 
0

( , )
i t

S kσ in decreasing order, the 
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Lyapunov exponents of F are expressed as (McSharry, 2005): 

 
02

1
lim log ( , )

i i t
k

S k
k

σ
→∞

Λ =  (3.155) 

When 1 0Λ > , the system is said to be chaotic.  When 1 0Λ < , the system has a 

stable fixed point.  In a 2-dimensional limit cycle, 1 0Λ = and 2 0Λ < .  In this case 2Λ  is 

the major indicator of the rate of attraction/repulsion, while the region of phase space in 

which trajectories lead into or out of the limit cycle is the basin of attraction/repulsion.  

In a torodial limit cycle, 1 0Λ = , 2 0Λ = , and 0,  3
i

iΛ < ∀ ≥ .  In this case 3Λ  is the major 

indicator of the rate of attraction/repulsion into the torodial region.  

Additionally, in a torodial limit cycle, there are two frequencies of movement for 

an enclosed trajectory.  The first frequency, 1f  is that exhibited around the major axis of 

the torus, while the second frequency, 2f  is that shown around the revolutional circle.  If 

the ratio, 1

2

f

f
 is reducible to a ratio of two nonzero integers (commensurate), then the 

torodial limit cycle is closed and periodic.  If the frequency fraction is not commensurate, 

the limit cycle is quasi-periodic and the phase trajectory covers the torus region densely, 

i.e., every point on the torus is eventually visited or arbitrarily closely visited by the 

trajectory.  This condition is equivalent to the denseness of the trajectory orbits, the final 

condition for a chaotic system.  In addition, no point in the region is visited more than 

once, hence the term quasi-periodic.  A novel point of research would be to find if the bi-

frequencies involved define any interpretive dynamics. 
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Figure 8. Limit cycles and fixed points 
Adapted from “Limit cycle, fixed point, and torus attractor” By XaosBits, 2006. 
Copyright 2009 XaosBits. Reprinted with permission under the GNU Free documentation 
license – Creative Commons Attribution-ShareAlike 3.0. 
  

If in a phase space region S , trajectories in a neighborhood of S diverge away 

from S , converging instead to exterior attractors, then S is called a strange attractor.  In a 

torodial limit cycle, iterative bifurcations occur, producing basins for strange attractors 

and subsequent chaotic behavior. 

One quantitative way of measuring how close the behavior of a trajectory is to 

being characterized as chaotic is the judicious use of the Feigenbaum number or constant.  

The Feigenbaum constant is proportional to the asymptotic limit of a series of differences 

between successive bifurcating points for a double-period limiting cycle and a natural 
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chaotic limit (Feigenhaum, 1979).  In more detail, let some function, f, generate a limiting 

cycle behavior and let
n

µ denote the point in phase space where a 2n-bifurcation occurs.  

In addition, let µ∞ denote the limit of this process.  Denote the distance between this limit 

and the point of 2n-bifurcation by: 

 
n n

µ µ
δ∞

Γ
− =  (3.156) 

Here 1δ >  is a constant known as the Feigenbaum number and Γ  is the 

proportionality constant.  Geometric convergence of this limit is assumed.  In (3.156) one 

can solve for δ taking proper limits: 

 1

2 1

lim n n

n
n n

µ µ
δ

µ µ
+

→∞
+ +

−
=

−
 (3.157) 

Feigenbaum numbers are universal for various categories of functions that describe 

dynamics exhibiting bifurcating behavior.  In particular, they predict when a dynamic 

will exhibit chaotic-like behavior because of their limiting value with respect to the 

bifurcation points.  In other words, the distance between a bifurcation point,
n

µ  and µ∞ is 

compared to nδ as a means for measuring the closeness to chaotic behavior.  As an 

example of this convergence, using the logistic map (3.153) with 2r = , after four 

bifurcations ( 4n = ), a Feigenbaum number of approximately 4.6692 was produced and 

chaotic behavior ensued with small perturbations.  
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Figure 9. Chaotic behavior as limit of bifurcations 
Adapted from “Bifurcation diagram as r increases” By  PAR, 2005. Copyright 2009 
PAR. Reprinted with permission under the GNU Free documentation license – Creative 
Commons Attribution-ShareAlike 3.0. 

 

Chaotic behavior also exhibits fractal dimensionality, that is, a chaotic process 

fills space in such a way that a statistical fractional dimension can describe the spatial 

span of the self-similar structure of chaos.  This is topological mixing in the sense that a 

phase space region will eventually intersect with a phase space regions in the time 

process.  Fractal dimensions are special cases of a general Rényi dimension given by: 

 
0

1
log

1
lim

1
log

i

i

p

D

α

α ε

α

ε
→

 
 −  =
∑

 (3.158) 

where ip
α are the respective probabilities of each iteration defining a Rényi entropy.  The 

weightα  is defined as the relative number of times those regions of the support of the 
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attractor are visited.  In a Mandelbrot fractal dimension, 0α =  the iterations are 

independent and ( )i

i i

p p Nα ε= =∑ ∑ , where ( )N ε is the smallest number of self-similar 

structures of sizeε  that cover the original structure.  Chaotic limit cycles will then cover 

the space of a torus with Rényi dimension given by Dα  (Mandelbrot & Van Ness, 1968).  

Values of α  for a region will depend on the functional form of its network power-law.  

These regions are topologically close to attractor basins in various subregions of the 

chaotic regime.  The larger the torus volume is, the more attractive the region.  

An interesting aspect of phase spaces is that a phase curve (trajectory) may pass 

through multiple limit cycles.  If the phase is repelled away from one limit cycle, it may 

be attracted into another limit cycle.  The interpretation for a phase space region may be 

that multiple limit cycles represent different types of phase spaces or degrees of strength 

of attraction of phase spaces.  A trajectory may wander into a permanent state of a weak 

phase space region until sufficiently perturbed.  Phase spaces are then characterized by 

multiple regions of torus limit cycles and isolated fixed point attractors and singularities.  

No trajectory becomes extinct in phase space although fixed point attractors are akin to 

phased-out weak trajectories.  It is only raised or lowered via new measurements and the 

nature of the phase space, i.e., the geometry of phase space, multiple limit cycle 

landscapes, fixed point attractors, saddle points, and strange attractors. 

What is a measure of information from a source that exhibits chaotic behavior in a 

dynamical system? This question investigates the notion of information measure or 

entropy in dynamical systems.  Pesin showed that certain deterministic nonlinear 
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dynamical systems exhibiting chaotic behavior have Kolmogorov-Sinai entropy (KS-

entropy) given by the sum of the positive Lyapunov exponents, that 

is KS i

i

H λ+=∑ (Pessin, 1977).  The KS-entropy is given for topological objects in terms 

of automorphisms and is formally defined as: 

 ( )11
sup lim ... k

k
H H

kα
α α α−

Φ →∞

 = ∨ Φ ∨ ∨ Φ 
 

 (3.159) 

for an automorphism Φ .   

To connect an information theoretic measure with the KS-entropy, one can first 

describe an abstract dynamical system as a triplet ( ), , tM µ= Φ� where ( ),M µ is a 

measure space with a one-parameter group of automorphisms{ }tΦ .  One then has a result 

given by Frigg for the KS-entropy in terms of Shannon entropy: 

 

( )

( )

1 2

1 2

1

1 1 2

1 2

1

0 ,..., 1

1

1
sup lim ...
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k

k

k
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k

k n
tt t

l l l
k

j l l

n
t tt t

i l l l

i

H p
k

z p

α
α α α

α α α α+

−

Φ →∞
= =

=

 = − 
 

 =  

∑ ∑

∑
 (3.160) 

where ( ) ln ,  0,  (0) 0z x x x x z= > = is the usual function in the Shannon entropy and 

partitions ( )1, ..., nα α α= are taken over the phase space of the dynamical system in such 

a way that t

jα is true if the trajectory ( )
t

xΦ  is in the partition cell, jα at time t, i.e., 

( )t jx αΦ ∈ where the state of the system at the initial time, 0t is x (Frigg, 2003).  The 

probability, ( )1 1 2

1 2
/ ...k k

k

t tt t

i l l l
p α α α α+ is the condition probability that the trajectory, ( )

t
xΦ is 
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in cell i
α at time 1k

t + given that it was in cell,
jlα at time 

jlt for 1,...,j n= .  The supremum 

in (3.160) is taken over all partitions α of the phase space of the dynamical system. 

 There is no quantum mechanical analogue to these definitions and conditions of 

chaos, i.e., no direct quantum chaos exists because no such sensitivity to initial conditions 

in a quantum mechanical system exists.  This is true because a quantum evolutional 

(time-dependent) system contains only periodic motions with definite frequencies, the 

exact anti-chaos.  Instead, the question of whether quantum mechanical systems can 

explain or describe classical chaotic systems in the limit, that is, as the discretization 

internal given by Planck’s distance approaches 0 or when large systems are considered, 

as quantum effects diminish, is the subject of quantum chaos (Berry, 2003).  Put in yet 

another way, quantum chaos is the characterization of a quantum system that possesses a 

classical analogue that exhibits chaotic behavior (Millonas, 1993). 

 One approach to studying chaotic behavior in the limit of classical dynamic 

systems is the investigation of their eigensystems, i.e., through their energy level spectra.  

To this end, nearest neighbor distributions (NNDs), NN
P  are utilized with Poison 

distributions of the energy levels, ( ) s
P s e

−= .  The probability, NN
P is that of finding a 

nearest neighbor at some given distance from a reference point in a many-body 

interacting system (Torquato, Lu, & Rubinstein, 1990).  NNDs are utilized in densely 

packed particle systems which are treated as inpenetrable for approximations to their 

dynamics to be feasible (MacDonald, 1992).  The NNDs of the energy spectra of classical 

chaotic systems are used to describe the extent of sensitivity of these systems in their 
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eigensystems and as approximations to some quantum system in the limit.  Chaotic 

classical systems may also be characterized by the statistics generated from the random 

matrix eigenvalue ensembles of these systems.  Specifically, if a classical dynamical 

system is invariant under time reversibles, then their eigenspectra statistics closely follow 

those of an ensemble of Gaussian random matrices and can be described by the Wigner 

distribution: 

 /4( )
2

sP s se ππ −=  (3.161) 

Now denote by ( )� ℏ the (Hilbert) state space of all quantum systems that are 

characterized by the quantization (Planck) distance ℏ .  Let ( )C Λ denote the space of all 

classical dynamic systems which are chaotic and have eigenspectra Λ .  Since classical 

dynamic systems are the quantization limits of quantum systems, they can be expressed 

as trivial quantum systems.  Classical chaotic dynamical systems in the limit are also 

quantum systems.  Hence the space of all classical chaotic processes are dense in the 

space of all quantum processes.  So
0

( ) ( ),  C
>

Λ ⊂ ∀Λ�
ℏ

∩ ℏ  where the closure operator is 

with respect to finer discretizations of the classical continuous space.  It will be shown 

later that Zadeh GTU-inspired logic subsumes that of quantum logic under certain 

conditions.  Hence, GTU processes, to be defined in chapter 4, are generalizations of 

fuzzy, quantum, and their hybrid processes, and so subsume all chaotic processes.  

Information in the sense of GTU processes is then realized through each specialization 

process, including chaotic processes. 
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 We now visit the topic of stochastic chaos.  For this part the setup is most 

demonstrable using diffusion processes which are quite general in describing stochastic 

systems.  We follow the development from Millonas (1993).  Consider the diffusion 

process q, described on n
R by the coupled stochastic differential equation: 

 ( ) ( ) ( ),  1,...,i i idq t q dt gW t i n= −∂ Φ + =  (3.162) 

where ( )qΦ is a time-independent potential bounded from below, ( )i
W t  are uncorrelated 

Weiner processes, and g is a diffusion coefficient.  Let ( )
t

qρ be the evolutional 

probability density of q which is described by the Fokker-Planck equation: 

 ( )
2t

g
ρ ρ ρ∂ = ∆ + ∇ ⋅ ∇Φ  (3.163) 

One may then use the form (time separation ansatz) for ρ : /( ) ( ) t g

t q q e
λρ ρ −= and 

changing basis using the transformation /( ) ( )g
q e qρ −Φ= Ψ , one obtains the eigenvalue 

equation: 

 ( ) ( )q qλ λλΨ = Ψ�  (3.164) 

where 
2

/ / ˆ ( )
2

g g g
e e qΦ −Φ= − = − ∆ + Φ� � ,

2
2

2

g
g g= ∆ + ∇ Φ + ∇Φ⋅∇� and 

( )2 21ˆ ( )
2 2

g
qΦ = ∇Φ − ∇ Φ .  The solutions to (3.164) for small g are given by: 

 
1 ( , )
2( )

i
S q

gq c S e
α λ

λ α α
α

−
Ψ = ∇∑  (3.165) 
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 where ( , )
q

S q p dqα αλ = ⋅∫ are the solutions to the Hamiltonian-Jabobi equation: 

( )21 ˆ
2

Sα λ∇ + Φ = .  The integration in the solutions, Sα are along the classical trajectories 

of the Hamiltonian equations of motion given by: 

 
2

,  

1 ˆ( , ) ( )
2

H H
p q

q p

H p q p q

∂ ∂
= − =

∂ ∂

= + Φ

ɺ ɺ

 (3.166) 

The solutions of  (3.163) are then given by:  

 ( ) ( )
t

g

t
q e q

λ
λ

λρ
 Φ+

− 
 = Ψ  (3.167) 

The problem framed in this way gives a description of quantum chaos as the 

effect that any chaotic behavior as depicted in (3.166) affects (3.164) through the 

eigenspectra.  The level spacing of the eigenspectra given as S, was then conjectured, as 

mentioned earlier, to follow the distribution, ( ) S
P S e

−= with level repulsion through the 

asymptotic behavior
0

( ) 0
S

P S
→
→ , thus leading to the speculated Wigner distribution form 

(3.161).  

We are now in a position to define stochastic chaos in the general case of 

diffusion processes with time-independent potentials as the properties of stochastic 

systems that are described by (3.162) when the equation of motion dictated by (3.166) 

exhibit chaotic behavior.  This is very different from directly studying the possible 

chaotic behavior of stochastic systems described by (3.162).  When 0g = (no noise), 

there is no relevance.  If one defines a family of potentials dependent on a parameter, 
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ε ,{ }εΦ and the respective descriptions of solutions given by the evolutions in (3.162), in 

such a way that as ε → ∞ the solutions transform from regular globally integrable ones to 

chaotic ones, then the conjecture is that the behavior of the eigenspectra level spacings 

goes from being described by Poisson distributions, ( ) S
P S e

−= , to Wigner distributions, 

(3.161).  Under these conditions, ( )P S gives the distribution of the level spacings of the 

eigenspectra, { }iλ of the system.  Utilizing (3.160), one gets a measure of the information 

entropy based on these ( )P S and hence, an information measure of a stochastic chaotic 

or quantum chaotic process.  Generalizations to evolution systems, such as (3.162), in 

terms of GTU and general fuzzy and hybrid processes will be presented in chapter 4.  

Under certain conditions analogous to the development here for stochastic, deterministic, 

and quantum chaos processes, a notion of information measure can be developed for 

these GTU processes. 

An interesting alternative to any differentiable system defined for spacetime, 

whether quantum or relativisitic is the fractal nature of spacetime, i.e., replacing 

differentiability with fractality.  In the discrete theory of physics, e.g., the notion of 

Planck scale physics to be discussed in this study for information physics, fractility would 

offer a spectrum of dimensional solutions between that of differentiability and 

discreteness.  In the case of a continuous but nondifferentiable function, a fractal 

approach would involve smoothing a nondifferentiable function f, in terms of a function, 

fε  of resolution (scale), ε  such that fε is differentiable for 0ε ≠  (Nottale, 2007).  In this 

way, a fractal curvilinear system, ( , )x ε� of scale resolution, 0ε >  is introduced that 
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would replace the differentiable Riemannian manifold of spacetime represented by 

( ,0)x� .  The systems of stochastic differentiability to be discussed in chapter 4 for the 

macroinfodynamics of info-holarchies can then be replaced by corresponding stochastic 

fractal systems.  The GTU process differential systems are in turn replaced by GTU-

fractal systems.  These will be discussed and formed further in that development. 

Adaptation and Evolution 

 Adaptation is the coevolution of at least two systems.  Prokopenko, et al. propose 

the following definition of adaptation: Adaptation is a process in which a system’s 

behavior changes in response to a stimulus so that the mutual information between it and 

a surrounding or enveloping nonstationary environment in which the stimulus emanates 

from, increases (Prokopenko, et. al, 2009).  A system may be ignorant of its 

environment’s structure, but may contain feedback mechanisms which continually 

modify its internal model of that interacting and possibly coevolving environment.   

 Adaptive systems exhibit at least three main characteristics: (a) generation of 

variety, so that its entropy decreases, (b) observation of feedback from the coevolving 

environment, and (c) a selection process in order to reinforce or inhibit interactions with 

the coevolving environment, which increases information content.  From this perspective, 

this open system can be combined with the coevolving environment to construct a new 

super system.  Adaptation, in general increases mutual information between a system and 

its stimulus environment and as such, the loss of information from variation is less than 

the increase in mutual information from the selection process.  Formally, if S is a system 

and Z is the stimulus environment, then ( , ) ( ) ( | )I S Z H S H S Z= − is the mutual 
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information shared between a system and its stimulus environment.  The selection 

process increases ( )H S because the probability distribution increases its modality, while 

the diversity generating process decreases ( )H S because the probability distribution gets 

smeared, that is, is closer in probability divergence metric distance to a uniform 

distribution.  This can be expressed as: 

 Proposition. If D
G and S

G are respectively, diversity generator and selection 

operators acting on the space of distribution (quantum density operators), � , then for 

any ρ ∈ � ,  

 
( ( ), ) ( , ) ( ( ), ), and

( ) ( ( )) ( ) ( ( ))
D s

D S

D G U D U D G U

H U H G H H G

ρ ρ ρ

ρ ρ ρ

≤ ≤

≤ ≤ ≤
 (3.168) 

where D is a divergence measure on � and U is the uniform distribution (
1

I
n

, the 

uniform quantum density operator of dim n where I is the identity operator).  The 

operator, D
G , can be further decomposed into component operators representing 

mutation, M
G , and recombination (crossover), R

G , in the environment of an evolutionary 

machine.  In the presence of an exogenous and stimulus environment Z, these operators 

are in turn, directly dependent on such systems.  Hence, we can write these operators 

as , ,  and Z Z Z

R S MG G G .  More clearly, if an evolutional operator is built from a sequential 

composition of such operations, then 

 ,  , , { , , },Z Z Z Z

E i j kG G G G i j k D S R i j k= ∈ ≠ ≠� �  (3.169) 
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represents a general evolution operator.  Then the conditional entropy of the evolution of 

ρ , ( ( ) | )Z

EH G Zρ can be decomposed linearly as 

 ( ( ) | ) ( ( ) | ) ( ( ) | )Z Z Z

M R SH G Z H G Z H G Zρ ρ ρ+ +  (3.170) 

under a certain class of evolution component operators.  The condition of adaptability 

reduces to the case where 

 ( ( ) | ) ( ( ) | ) ( ( ) | )Z Z Z

M R SH G Z H G Z H G Zρ ρ ρ+ ≤  (3.171) 

so that in an adaptive system, S, ( , )I S Z increases.  In order to define adaptability, one 

must define what a stimulus to a system is.  Using a probabilistic approach, an event, 

denoted by A, is a stimulus for a system, S to change to another system new
S , if 

 ( ) ( | )
new new

p S S p S S A→ > →  (3.172) 

If one defines a system changing to another system as a state change, from ρ to new
ρ then, 

in terms of state spaces (quantum densities), this condition may be rewritten as: 

 ( | ) ( | , )
new new

p p Aρ ρ ρ ρ>  (3.173) 

A quantum system S whose state is represented by the density measure, t
ρ  at time t, is 

said to adapt during the time increment 0 0[ , ]t t h+  with respect to a stimulus A and change 

to the quantum system '
S represented by the density measure '

tρ at time t if: 

                                                 0 00 0

' '( | ) ( | , )
t h t ht t

p p Aρ ρ ρ ρ
+ +

<
                                 (3.174)

 

and
00

'
tt hρ ρ+ ≠ .  Furthermore, in this case, S is said to be adaptive and 

                                             0 0

' 'lim ( | ) lim ( | , )
t t t t

t t
p p Aρ ρ ρ ρ

→∞ →∞
=

                            
   (3.175) 
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If the stimulus event A is causally linked internally to the system, then S is called self-

adapting.  The types or orders of adaptability are recognized.  First order adaptation 

refers to the changing of predictive probabilities while holding stimulus sensing 

operations consistent.  Second order adaptation applies changes to the mechanisms that 

control feedback, variety generation, and the selection procedure for inhibition or 

reinforcement.  Lastly, third order adaptation applies to changing those mechanisms in 

second order adaptation for each agent in an autonomous multiagent system 

(Prokopenko, et. al, 2009). 

Holarchies 

 Complexity and related information measures have been described and expanded 

upon.  However, a question remains:  “what kinds of organizations do natural laws 

construct from information flow and complexity?”  We now turn to the relatively novel 

topic of holonic organization and its constituent parts named holons.  Arthur Koestler is 

credited with first coining the phrase holons to refer to nested self-similar whole-part 

organizations in his attempt to describe self-organizing open hierarchical order (SOHO) 

systems (Koestler, 1967/1990).  In his definition he laid out three major requirements for 

holonic behavior: (a) stability, (b) autonomy, and (c) cooperation.  These requirements in 

and of themselves do not uniquely define holons as certain CASs in general satisfy them.  

The nested self-similarity of holons requires that they each exhibit behaviors of whole 

organizations while retaining the individuality of parts of an organization.  In other 

words, a holon is a whole consisting of parts (each of which are holons) and is 

simultaneously a part of a larger organization that is also a holon.  Hence a nested self-
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similiarity is exhibited in holonic organizations.  Organizations depicting these structures 

and behaviors are referred to as holarchies.  If one adds to the structure of a holarchy that 

of a CMAS, then one has a holonic multiagent adaptive system (HMAS).  

 The prototypical HMAS is a generic immune system.  Smith illustrates a chain 

from the biosphere as a holarchy and closely examines how holarchies are built from 

constituent parts (Smith, 2009).  This will be revisted after this study’s micromodel of 

information has been developed.  However, the most anthropomorphically ostensible 

example is that of a noӧsphere—the collective group of consciousness and energy-matter 

in the universe (Vernadsky, 1945; de Chardin, 2003).  To this add the extension of 

exogeneous intelligence, that is, the phenomena of general (artificial) intelligence and 

consciousness through media outside the norm of the biosphere.  This extension is, of 

course, the stuff of the universe—the concept of “universe as computer”, a natural 

postulate of a potential holonic calculus.  Wilber has made a societal holonic connection 

more explicit by introducing a general 2 x 2 matrix map covering the levels of the 

noӧsphere in his All Quadrants All Levels (AQAL) framework (Wilber, 1996).  

Additionally, Wilber uses the term transorganizational as the prototypical extension of 

orgranizations that depict holonic structure—capable of transforming and reinventing 

their whole-parts (holon-components) to form new types of organizations.  

Transorganization as holonic structures and story-telling narratives (narrativistic 

organization) is further developed in Boje (2000).   

 In this study, the properties of self-assembly and adaptation used within the 

framework of info-holarchies and their generalized processes form the basis for 
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transorganization in info-holarchies.  This is an attempt to construct an abbreviated 

catalog of holarchies in the noӧsphere.  Laszlo has extended these concepts to an 

interconnected web held together by an Akashic field which is akin to a universal abstract 

information field (Laszlo, 2004).  These structures and their action spaces are 

phenomenologically holarchical because they näively point to the holonic infrastructure 

connecting the quantum SM of physics with the biosphere, extending on to the geosphere 

and cosmological structures.   

 Sheldrake (1984, 1995) has proposed his morphogenic resonance as a nonlocal 

feedback mechanism that is manifested by morphic fields which are the fundamental 

evolvers of organisms through the spatio-temporal propagation of information and 

amplification of similarity in pattern.  Essentially, organisms are formed and evolve 

based on an imposing patternization mechanism from these fields which is constructed by 

ancestor organisms.  Natural laws, to Sheldrake, are more like habits that are 

morphogenetically translated (taught and learned) between generations through their 

respective species-specific morphic fields.  Objects in the universe that possess (connect 

with) these morphic fields are referred to as morphic units, which are fundamental units 

of form, organization, and arrangement.  When these objects are living entities they are 

subject to the processes of morphogenic resonance and specialized biological morphic 

fields called morphogenic fields.  Morphic fields are not traditional fields in the sense of 

physical field theory. Instead they are posited to cause interaction between different 

holonic levels in organisms through relational strenghening of patterns.  Sheldrake crafts 

this thesis around the main concept of Darwinian evolution – natural selection.  
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 The most well known and studied of physical fields are the electro-magnetic (EM) 

fields that resonate to create most of the energy that humans detect on the mesoscopic 

scale.  In an attempt to correlate fields in this spectrum to human consciousness and the 

translation to motor neurons in the brain, McFadden (2002) has theorized that human 

brains emanate EM fields in order to construct consciousness and action potential – his 

conscious electro-magnetic information (CEMI) field theory. This action potential is 

basically the stimulation of motor neurons which in turn, communicate intent to external 

bodies and organisms. This is a controversial thesis that has not been experimentally 

proven nor that has a basis in neurobiology as pertains to ionic chemical flow in dendritic 

and axonic dynamics. These will be discussed in detail in chapter 4 when an application 

of the info-holarchy will be made to neural-brain dynamics and structure.   

 The idea that a physical field contains an information ensemble that is received by 

another neuronal subsystem is not new, nor does it add any more merit to the physics of 

biologics. All biologics carry information via genetic spaces, memory mechanisms (epi-

genetic spaces), and resultants from neuronal processing.  The brain emanates electrical 

activity via its biochemical neurotransmitter activity.  Attaching such mechanisms to a 

field is not particularly problematic, but implying that that field is received in a specific 

fashion so as to construct all of consciousness and action potential is a leap.  Again, the 

field concept is what is important as a lesson in this study’s attempt to construct an 

information field theory for all organisms, biological and otherwise. 

 While the ideas of morphic, akashic, and CEMI fields are pedestrian, not 

establishable in physics, and are not falsifiable, they nonetheless establish motivation for 
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a possible existence of an interconnected framework in the form of a (virtual or 

placeholder) field for the phenomenology of organizations as informational holarchies in 

the universe.  It remains to establish a rigorous mathematical and physical schema to 

construct verifiable holarchies as organisms.   

 An early informal attempt towards this goal was made by Koestler (1967/1990) in 

his example of the human brain.  More recently, an informal systems-theoretic notion 

was presented that shows how a holarchy can be constructed based on multiagent systems 

and holonic relationships between their layers (Pichler, 2000).  This study discusses 

rigorous generalized information-theoretic metamodels towards this goal, based on (a) a 

newly proposed information particle, the informaton, constructed as a generalized holon, 

(b) an information field theory, and (c) information holarchies or info-holarchies, as 

scaffolds for information flow.  The scaffolding is glued together using concepts from 

spinfoam networks of loop quantum gravity (LQG), an information signal field theory, 

general uncertainty causaloids, and topos theory, a category-theoretic generalization to 

mathematical logic and set theory.  

 Applications of this metamodel will be presented in terms of inference machines, 

specifically, the neuronal structure of biological brains, and to a novel holographic 

multidimensional dashboard representation of the dynamic information in business 

organisms, as they frequently will be referred to (organizations are societal organisms 

and hence the use of the more general description - organisms). Analogies will also be 

sparingly made in passing to socio-economic and cosmological systems.  Koestler’s 

supreme vision of a holarchic universe will be the underlying foundation of these 
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constructs.  The novel injection of an information skeleton for each holarchy is the main 

contribution of this study to his insight.  This study proposes that a sufficiently powerful 

and universal mechanism for information structures, such as the info-holarchy, will 

greatly benefit the description of the evolution of business organisms and spaces with 

respect to an underlying and correspondingly powerful information management 

metaprocess. 

 In the ensuing discussion, basic ideas from Rodriguez, Hilaire, and Koukam 

(2003, 2008), and Smith (2009) will be used to construct a computational notion of 

holarchies while we frame a separate more rigorous and convenient notation and 

causaloid-stochastic model for HMASs.  Systems merge with other systems to form 

holonic structure based on their individual affinity toward each other.  Holarchies have 

various levels of organization.  Each level consists of a set of holons that share 

communication and functional similarity.  At each level, a peer holon at that level is 

capable of interpreting the actions of that level.  However, its view of other levels of the 

holarchy becomes progressively vaguer or different as the distance between its level and 

the viewed level increases.  This is the Law of Perspective for holarchies.   

 There are three categories of structures for holarchies: (a) federated autonomous, 

(b) moderated group, and (c) unitary merged.  In the federated model, a group of agents 

coalesce into a connected web where each agent has complete autonomy with respect to 

its actions.  In a unitary merged model, all the members of the group are merged into one 

holon, losing the notion of individuality.  Finally, in a moderated group, the agents form a 

connected group where one of the agents acts as a moderator for the group, essentially, a 
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gatekeeper of communications and signals.  The moderated group acts as a hybrid of the 

frist two types, federated and unitary merged, whose behaviors exhibits extremes in the 

degrees of agent autonomy.  To this end, for this discussion, the moderated group will be 

examined such that parameters will be presented as control knobs in defining the identity 

of the agents.  In this way, a general holarchy can be reprseented by the model and its 

parameter settings.  

 In the following model of holarchies, holon inter-level communication is 

evidenced by the transfer of information between representive heads at each level and not 

directly to the viewing or requesting holon.  Added to the requirements for a holarchy of 

Koestler are the following four properties: (a) assimilation, (b) adaptation, (c) 

communication, and (d) reproduction.  These actions are manifested by holons at 

different stages of interaction with other holons.  Communication ensues between holons 

that are at the same level.  Assimilation happens when a holon of a higher level interacts 

with a holon of a lower level.  Adaptation results when a holon of a lower level must 

change in accordance with the changes occurring in a holon of a higher level.  Emergence 

appears when holons at one level interact to form a higher order holon with some new 

properties alien to and preservation of old properties from its constituent holons.  

Moreover, these emergent phenomena are manifested in higher dimensional spaces.  So, 

as an emergence occurs, a new morphology develops that necessitates extra spatial or 

temporal dimensions.  We will introduce a causal formalism that will generalize temporal 

measurement, the causaloid framework and so, in this sense, dimension expansion in 

emergence in holons will be generalized.  
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 How do holons interact in the abstract? The Role-Interaction-Organization (RIO) 

model of Hillaire, et al. (2000) will be used in framing the holarchy model.  In general, 

adaptive agents have evolutional goals and services.  They have sensorial inputs and 

exude actions based on a space of rules that they adhere to.  Because of their adaptation, 

these agents can change their respective rule spaces.  Holons possess these properties.  

Some definitions will clear the way for a cleaner approach to framing holarchies for our 

use. 

 Definition. (Role). A role, Ri, is an abstraction of a behavior in a certain context 

and confers a status within an organization.  The Role gives the playing entities the right 

to exercise its capacities.  Roles may interact with other roles defined in the same 

organization. 

 Definition. (Interaction). An interaction, ijI  links two roles,  and i jR R  in a way 

that an action in the first role produces a reaction in the second. This may be a causal or 

societal linkage. 

 Definition. (Organization). An organization, O, is defined by a set of roles, 

{ }O O

i
R R= , their interactions, { }O O

ij
I I= and a common context that defines a specific 

pattern of interactions, ( )O O
P I to form a triplet, { }, ,O O OO R I P=  

 Definition. (Holon Model) A holon of level n, is a triple { }1 , ,n nH π−=� 
 , 

where: 

1n
H − is the set of subholon members of the super-holon n

�  


  is the set of organizations (organisms) that govern the actions of the super-holon n
�  
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( )
1: 2roles

nHπ −

֏ is a set function that assigns to a subholon a subset of roles in 

n
� defined by the governing set of organizations 
  such that 1, ( )

i n i
h H hπ−∀ ∈ ≠ ∅ . 

 The spectrum of autonomy of the agents in a holon is thus actualized by the 

governing organizations 
 of that holon.  As such it controls the eventual structure of the 

holarchy.   The moderated group model will be discussed here because one can control 

for the autonomy of the agents and hence of the structure category of the holarchy 

through the rules from the sets of 
 . 

 Two systems have a high affinity to each other if they closely share goals and if 

their services (actions) are highly complementary.  Affinity then becomes a measure of 

the attraction between two or more systems as measured by the similiarity between their 

respective goals and interlocking services offered.  

 Definition. (Affinity) Affinity is a measure of the compatibility of two holons to 

work together towards a shared goal(s). 

 To make this more precise, let ( || )i jD h h denote an affinity divergence between 

two holonic systems,  and i jh h . In this scenario, holon i
h

 
has taken on the role of a HEAD 

in its containing holon level in an HMAS Η . Holon jh is vying to join this holon level 

through its affiliation with i
h .  As a rule, one then chooses a threshold, i

ε , in which the 

condition, ( || )i j iD h h ε<  implies that jh  joins i
h  in the same holon level in Η and 

assumes the role of PART.  In this discussion, a holarchy will be managed by roles of its 

constituent parts.  Each part will have four possible stationary roles (a) HEAD, (b) PART, 

(c) MULTIPART, and (d) STANDALONE, and one transitory state, MERGING.  A HEAD 
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will be responsible for communicating with other holons on behalf of its occupying holon 

members and structure.  It is the only agent holon that can reside in more than one level 

at a time and performs its actions independently on each level.  It is thus a moderator for 

its holon level.  In this respect, holon level i can only directly interact with holon level i-

1.  Higher order inter-holon level interaction is done via a chain of HEAD holon 

interactions from adjacent holon levels.  A STANDALONE will be autonomous with 

respect to its holon members and structure-it does not belong to a holon within its holon 

level and can only interact with the head(s) of the holons on that holon level.  A PART 

will be subject to requests from its fellow parts in the occupying holon and to either 

requests or commands from the holon head.  It can only interact with agents from its 

holon container.   

 If a part requests a service from a part of another holon, it will send that request to 

the head who will request that of a part in its connected holon.  A MULTIPART holon is 

part of more than one holon at the same part level (See Figure 6).  The action of merging 

(state of MERGING) takes on different definitions for each role.  MERGING is the state in 

which a holon has reached an unsatisfying measurement and requests to change its role 

within a holon level.  For a STANDALONE agent such requests may be to join a holon via that 

holon’s head.  If accepeted the STANDALONE agent becomes a PART  agent of that holon.  If 

not the STANDALONE may endeavor to form its own super-holon and annoint itself as 

the head.  It may also simply choose to remain a STANDALONE.  PART agents may 

request to opt out of membership in a holon (fission process) either through self decision 

or via a command from the holon head.  It does this through the measurement of its 
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satisfaction in a certain setting.  It may also request to becoming a part for another holon 

on the same holon level.  If no conflicts occur when a part has become a part for more 

than one holon, then it proceeds to becoming a MULTIPART.  Conflicts can occur in at 

least three ways: (a) interest conflicts in which sup-holons do not share similar goals or 

have contrasdictory services, (b) authority conflicts in which heads of the super-holon 

request contradictory requests from the multipart, (c) unbalanced authority conflicts in 

which one of the super-holon’s head has more power than the others over the multipart, 

and (d) a combination of the first three types of conflicts.  Agent or holon satisfaction is 

the measure used to build rules for these actions.  Satisfaction will be defined for a holon 

later. 

 

Figure 10. Holarchy and holon agents 
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 In defining an affinity divergence, a measurement is taken.  If that measurement 

requires a certain amount of resources, then the act of calculating a divergence reduces 

the resources left for a holon.  If calculating (measuring) ( || )i jD h h requires a resource 

allotment of ( , )D i jR h h , and holon i
h  has resources of ( )

i
R h , then the act of calculating 

the truth value of the proposition, ( || )i j iD h h ε< will be carried out only if  

( , ) ( )D i j iR h h R h≤ where i
h is the requesting holon.  So the action rule, '( )ha h  for accepting 

an agent '
h  into the holon represented by the head i

h  will be: 

 

' ' '
'

1 (accept),  if ( , ) ( ) and ( || )  
( )

0 (reject),  otherwise
i

i

D i i h

h

R h h R h D h h
a h

ε ≤ <
= 


 (3.176) 

This may be generalized so that a decision on accepting members is dictated by a group 

of member holons in a weighted scheme.  These will then dictate the archy-hoods of the 

decision process, i.e., monarchy, oligarchy, polyarchy, or apanarchy.  Define the 

divergence measure to be a weighted average of the single divergences between all of the 

members of h and the requesting holon, '
h : 

 '( || ) ( || ),  1 
i i

j ij i ij

h h h h

D h h D h hω ω
∈ ∈

= =∑ ∑  (3.177) 

This can be generalized to a functional, F defined on the cross-product space, 

v C

hH H⊗ where =  h v , vH is the dimensionalv − space of vectors whose components 

are subholons of h and v C

hH H⊗ is the space of subholons exogeneous (nonmembers of) 

to the holon h : 

 ( )' '
1( || ) ( , ),  , ..., vD h h F h h h h h= =  (3.178) 
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In order for D to qualify as a divergence measure, the form of F can be quite general, as 

in the requirements for an( ),h φ -divergence discussed in (3.88).  The resource functions 

can be similarly generalized to accommodate all the member subholons: 

 
' '( , ) ( )D iR h h R h≤  (3.179) 

The actions can thus be rewritten as: 

 
( )

( , )
1 (accept), ( , ') ( ') and '

( ')
0 (reject), otherwise

hD h

h

R h h R h D h h
a h φ

ε ≤ <
= 


�
 (3.180) 

Dynamicism in the roles of holons within the holarchy will be dictated by the merge 

states and the degree of satisfaction for each.  To this end, different measurements of 

satisfaction will be introduced for holons.  First a general definition. 

 Definition. (Satisfaction). Satisfaction is a measure of the progress of a holon 

towards the accomplishment of its current goal(s). 

Let i
∈� � depict the set of holons that holon (agent) i belongs to where � is the set of 

all holons in a holarchy, H.  Let { }H (HEAD), P (PART), M (MULTI-PART), S (STAND-ALONE)
i

R ∈ denote the 

role state of holon i.  Now define the different levels of holon (agent) satisfaction.  The 

following three satisfaction measures are with respect to the agent i: 

Self-satisfaction: i
Ss denotes the satisfaction that is self-produced (without 

influence from others). 

Collective satisfaction: H

iCs denotes the satisfaction that is produced through the 

collaboration with other agents of the holon H, that it belongs to. 
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Leadership satisfaction: H

iLs denotes the satisfaction produced for the head of the 

holon H, that it belongs to and is attributed to it alone. 

Then the accumulated satisfaction produced for the agent i is:  

 
i

h

i i

h

As Cs
∈

= ∑
�

 (3.181) 

The leadership satisfaction produced for the agent i if it is the head of the holon h is: 

 
h

i j

j h
j i

LHs Ls
∈
≠

=∑  (3.182) 

Denote the necessary instant satisfaction produced for the agent i to finish a task assigned 

to that agent with constraints K as: K

iNs .  Finally, the instant satisfaction produced up to 

the moment (both individual and accumulated) is: 

 

  , if or

, if 

, if 

P Mi i i i

Hi i i i

Si i

As Ss R R

Is LHs As R

Ss R

+ = =


= + =
 =

 (3.183) 

Rodriguez, et al. model these roles and actions in a deterministic algorithm for 

multiagent simulation, we here label as a holonic engine.  This role rule space can be 

enumerated as a state transition matrix, where H1 and H2 are competing holons for 

multiparts on the same level:
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Table 1 

Holon State Transition Matrix 

Transition events for traversing from one holon state to another 
 

new
old
 

S P MP H M 

S Is Ns≥     Is Ns<
 

P [ ]

[ ]

 

AND

Is Ns

Ss Cs

<

>

 

 [ ]

2 1

AND

A max( , )
H H

Is Ns

s Ls As

<

 > 
 

PH
C   

MP  1 2 0
H H

As As− >>

 

   

H Is Ns<      

M  1H
Ls As<   1

1

OR

0

H

H

Ls As

a

>

=

 

 

 

Here PH
C represents the condition that the current head of the super-holon has 

relinquished its role as such because for it, Is Ns< and for the part subholon potentially 

assuming the head role,
1

1 1max
H H

H
As As= (the current most satisfied and hence resourceful 

part in the super-holon).  Other rules may apply for choosing a new head for a super-

holon, i.e., there may be coalitions of subholons that form to choose such.  One may also 

consider the application of a general game-theoretic framework for the dynamics of holon 

development.  This will be investigated in the next section on quantum games adapted for 

HMASs.  Utility can be equated to satisfaction, while cost may be akin to resource 

consumption.  Since holarchies are normally open systems, a nonzero sum game setting 

would be more suitable to a practical construction. 
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 Higraphs have been shown to be a useful graph-theoretic tool in describing 

holarchies (Rodriguez, 2005).  Higraphs (Hierachical graphs) describe hierarchical 

relationships in terms of graph components.  By mapping holarchies onto graphs, various 

mechanisms for exploration can be opened.  In particular, graph networks can be 

constructed for holarchies so that dynamics can be laid upon them in a more rigorous 

fashion. 

Definition. (Higraph). A higraph H is a quadruple{ }, , ,B E ρ π where B is a set of 

universalized elements called blobs, E, a set of edges which is a subset of 

B B× , : 2B
Bρ → a hierarchical function that defines the direct descendents of a blob, and 

: 2B B
Bπ ×→ a partitioning function on B. 

In general, one can define a recursion for the hierarchical functions of a holarchy.  

Define recursive hierarchical functions for a super-holon, H with the set of subholons, 

� : 

 1

1 1
( )

1

( ) ( ) ( ) ,  0

( ) ( )

i

i i i
k H

H H k i

H H

ρ
ρ ρ ρ

ρ ρ
−

− −
∈

 = >  
= = �

∪ ∪
 (3.184) 

The level i of the holarchy with respect to a starting holon H, is then given by ( )
i

Hρ .  In 

the case of multipart members, one uses the directed acyclic graph (DAG) of the higraph 

that represents the holarchy H.  A multipart link is represented by multiple edges from the 

multipart to its super-holon vertex.  To include a legitimate description of a HMAS, one 

uses the notion of a configuration in a higraph.  A blob in a higraph can be an abstraction 
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such as a logical operator.  For holarchies that employ logical gates so that alternative 

super-holons can be composed, we consider a more general setting. 

Definition. (Higraph Configuration). A higraph configuration, C, in a higraph H, 

is a subset of blobs in H such that: (1) for any nonelementary (nontrivial) b C∈ that 

contains r orthogonal components, ( ) 1i b Cπ =∩ holds for each 1 i r≤ ≤ , and (2) for 

any 1,  if ( )b C bρ−∈ ≠ ∅  then 1( ) 1b Cρ − =∩ . 

Higraph configurations legitimize a hierarchical set in the sense of guaranteeing 

semantic structure.  One can now form legal (semantic) holarchies that use logical 

operators as vertices (super-holons) by finding the higraph configurations of such higraph 

representations of holarchies.  Finally, the roles for super-holons in a holarchy can be 

defined using the hierarchical function in the following manner: 

A holon h has the multipart role in the holarchy represented by { }, , ,H B E ρ π=  

1 2 1 2 1 2 2 1 1 2,   ,  ( ),  ( ),  and ( ) ( )h h B h h h h h h h h hρ ρ ρ ρ⇔ ∃ ∈ ∋ ≠ ∉ ∉ ∈ ∩  

A holon h has the part role in the holarchy represented by { }, , ,H B E ρ π=  

1 2 1 2 1 2 2 1 1 2

3 3

,   ,  ( ),  ( ),  and ( ) ( )

and   ( )

h h B h h h h h h h h h

h B h h

ρ ρ ρ ρ

ρ

⇔ ¬∃ ∈ ∋ ≠ ∉ ∉ ∈

∃ ∈ ∋ ∉

∩
 

 Here, we generalize the higraph representation of a holon and in so doing, 

generalize relationships in a holarchy.  We label these holarchies as hyper-holarchies.  

Consider a higraph that contains hyperedges, that is, multinary edges-edges connecting 

multiple vertices (Harel, 1988).  A DAG mapped to a higraph was sufficient to represent 

a simple holarchy.  Suppose now that super-holons can be related to other super-holons 
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by an arbitrary, nonheirarchical function.  Furthermore, suppose super-holons are mapped 

in this way to multiple other super-holons.  One now has a hyper-holarchy that is 

represented by a higraph with hyperedges.  These hyperedges from the viewpoint of 

hyper-holarchies, connect seemingly disparate super-holons with each other.  

Consequently, a version of virtual holarchies appear that generalize the notion of 

hierarchies of holons.  

Definition. (Hyper-higraph). A hyper-higraph, N
H  is a higraph which contains 

hyperedges, , 1,...,l
E l N= of multiconnectivity up to N. 

Definition. (Hyper-holarchy). A hyper-holarchy, N�  is a holarchy that contains 

arbitrary, possibly nonheirarchical relationships with up to N multinary connectivity 

between holons and is representable by a hyper-higraph N
H . 

Stochastics and fuzziness can enter into the structure of a holarchy by considering 

edges of the higraph representing that holarchy to be probabilistic or fuzzy.  Hence, GTU 

inspired rules for the existence of edges in a higraph representation of a holarchy define a 

GTU holarchy.  In this manner, one defines a GTU-holarchy of which, one instance is a 

quantum entanglement version of edges and thus if holarchies. 

Definition. (GTU Higraph). A GTU higraph is a hyper-hygraph that has edges, E 

that are governed by a GTU constraint as defined by a Zadeh GC.  This, in turn, defines a 

GTU holarchy. 

Consider a further stochastic approach to holon dynamics.  The state of a holon 

may be modeled as a general stochastic process.  A specialization could be a Markov 

process.  Let ( , )h i

XYp t t∆ denote the probability of agent (subholon) i transitioning from 
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state (role) X to state (role) Y with respect to the super-holon h during the time 

interval ( , )t t t+ ∆ .  For each subholon, i in super-holon h, a stochastic process, ,i h

tS  

modeled by a series of random variables indexed by t, following such a probability law 

can be constructed.  In this regard, all the above mentioned definitions of subholon 

satisfaction can be parameterized using time t.  Then the probability rules can be made 

explicit for each state transition.  For example, 

          

( , )

[   is head of super-holon  at time ,  I ( ) ( )]

h i

HS

C

i i

p t t

p sub holon i h t s t t ns t t

∆ =

− + ∆ < + ∆
 (3.185) 

Quantum Games For Multiagent Systems 

In our later consideration of informatons as bipartite entangled particles, the 

question of agent (particle) coordination and cooperation is germane to the possibility of 

building higher order organizations such as holarchies with quantum entanglement.  We 

have investigated a system of rules and actions for holarchy development.  Using the 

resource and satisfaction measures of the prior section, a game-theoretic slant can be put 

on this framework.  In this setup a quantum game is initiated for holons and their 

respective agents.  The agents utilize entangled and unentangled pairs of particle 

information.  Satisfaction and resource measures will be converted to utility measures for 

a game.  Game coalitions are then formed akin to holon development, i.e., an agent enters 

into membership into a holon as it would for a coalition in a game setting. 

Quantum games are games in which players may share in the resource of qubits 

(qudits) supplied by a central authority (attached quantum system).  POVM operators are 

applied by each player to the qubits received in order to extract information 
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(measurement) from a central authority (game quantum system).  The payoffs are then 

distributed based on these measurements.  Nash equilibriums may be calculated based on 

this distribution of quantum superposition and entanglement.  We investigate two-particle 

entangled states for quantum games with a mixture of unentangled pairs.  This has been 

shown to reduce player collusion and general computation issues (Zhang & Hogg, 2003).  

Consider an n-player game.  The set of choices for the n players in a given turn is given 

by { }1,..., ,  n ic c c c C= ∈ and the payoff function for the ith player is given by ( )
i

A c .  The 

state of the game is given by the superposition, cc
cω ψ=∑ , where the sum is taken 

over all choices from C for each player in the game.   

Each player has access only to their particular part associated with the choice i
c .  

They apply an operator only to their corresponding part in the superposition state, An 

entangled state Jω  is produced where J is an entanglement operator that commutes with 

the classical single-player operators i
J .  A player then selects an operation to apply to 

their part of ω , resulting in the state 
1

'
n

i
i

v V Jω
=

 = ⊗ 
 

.  Now they undo the initial 

entanglement, which results in the state † 'J vψ = .  The final superposition state is used to 

give a definite choice for each player.  This is accomplished by the application of a joint 

operation followed by a measurement.  For a given (choice) ω and J, the final 

superposition is a function of their choices, that is, ( )1, ...,F nV Vψ ψ= .  Finally, a 

measurement of F
ψ  is taken.  The probability of producing a particular choice, c, is 

2

c
ψ .  The expected payoff of player i is then given by

2*( ) ( )
i c ic

A c A cψ=∑ .  Players 
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know, in advance, the initial and final operations to be applied to the superposition.  The 

original game payoff structure is to be preserved by this quantum game.  For details on 

the specific setup information for particular game types see (Zhang & Hogg, 2003).  A 

quantum game can then be given by the tuple ( ), , , ,G n C A J ω=  where 

( )1( ) ( ),..., ( )nA c A c A c= .  Nash equilibria are then dependent on the choice of the pair 

( ), Jω .  In the case of a qubit game, players make binary choices represented by a bit.  In 

a qudit game, a multibit is used to represent d choices.  Most commonly, for a qubit 

game, the initial setup state is 00...0ω = and 

 ( ) 0 11
,  ,   the identity

1 02
n x x

n
J I i Iσ σ

 
= + ⊗ =  

 
 (3.186) 

Under this setup, the initial game state ( )1
00...0 11...1

2
J iω = +  is maximally 

entangled.  If players are restricted to the use of the two operators, I and 
0

0

i
U

i

 
=  
 

then 

G is reduced to a classical game.  In this case, the reduced classical game is a subgame of 

G.  The case of mixed entangled states will be reviewed next.  Here, two players share 

two qubits maximally entangled with probability p and not entangled with 

probability1 p− .  
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Figure 11. Informaton sharing in a HMAS 

 

The probability p may or may not be publically announced.  Now consider two 

games, 0 1 and G G with the same strategy space, and let pG be the game where 0G is 

played with probability 1 p− and 1G is played with probability p.  The respective payoff 

functions are, (0) (1) ( ),  ,  and p
A A A where ( ) (0) (1)(1 )p

i i iA p A pA= − + .  Now let 0G be the 

game in which the qubits are not entangled and 1G the game in which they are maximally 

entangled.  We then have the following consequences: 
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1. If 0 1( , )S S is a Nash equilibrium for 0 1( , )G G then it is a Nash equilibrium for 

pG for 0 1p≤ ≤ . 

2. The strategy ( , )S S is a Nash equilibrium for both 0 1 and G G and so is for pG for 

0 1p≤ ≤ where S is the strategy where the operators are of the form: 

 2 2

2 2

cos sin
( , , )

sin cos

i i

i i

e e
U

e e

θ θφ α

θ θα φθ φ α
− 

=   − 
 (3.187) 

are used.  In particular, 0

0 1
( ,0,0)

1 0
U π

 
=  − 

and 1

0
( ,0, )

02

i
U

i

π
π

 
=  − 

 

are used with probability p and 1-p respectively for two-qubit entanglement pairs.   

These results can be extended to the case were each player has access to multiple qubits.  

Let ( )
1 2,

,
e i j i E j E

B b b
∈ ∈

= be the set of maximally entangled pairs and ( )
3 4,

,
u i j i E j E

B b b
∈ ∈

= the 

set of unentangled pairs.  Let i
P denote the ith player.  In a general situation, for a 

given i
P , it will share i

r  pair elements in e
B with other players, { }

( )k k I i
P

∈
for an index set, 

( )I i where ( ) iI i r= .  Now let { }2 i i E
P

eP ∈= denote the different subsets of players in which 

mutually shared pairs have an overlay of qubits, so that each subset of players in e
P is 

relevant to each player’s probability of contribution in that subset.  Let the operator 

1( ,..., )li i

eV be applied to the 1( ,..., )
l

i i th− qubit tuple corresponding to a subset with l relevant 

qubits in e
P and the operator 1( ,..., )mi i

uV be applied to the unentangled tuples.  The final game 

state can be expressed as: 
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 ( )1 1

1 1

( ,..., ) ( ,..., )†

( ,..., ) ( ,..., )

ˆ ˆl m

l m

i i i i

e u
i i i i

J V V Jψ ω= ⊗ ⊗ ⊗  (3.188) 

where ( )2
ˆ T

n
J Jσ σ= ⊗ , 

1 0 0

0 1 01

0 1 02

0 0 1

i

i
J

i

i

 
 
 =
 
 
 

, and σ is a permutation matrix of size 2
n  

that permutes vectors of the form ( )0 1 1 1... ...i i nx x x x x+ − to ( )0 1 1 1... ...i i nx x x x x+ − . 

 The case for a QG game with relativistic effects and generalizing to the Zadeh 

GTU process will be developed for the info-holarchy model in chapter 4.  In addition, a 

semiotic version of this game will be constructed based on the Piercean model of 

semiosis to be reviewed and expanded upon later in this chapter.  In this class of games, 

the observer as an interpretant, is considered in the reception of strategy information 

between players (agents).  This means that the utility of a particular payoff will be 

observer-dependent, not absolute across the player spectrum.  

Bridging Information Scales 

Through the structures of general heirarchies, such as holons and other 

organization frameworks, information exists at various levels and interacts to create the 

dynamics of movement and creation from one scale or level to another.  How is this 

dynamic manifested?  We have iterated on structure and axiomatic laws for behavior, but 

the dynamic of action has been limited to the afterthought of obedience of law.  

Lerner has proposed an inter-level stochastic model utilizing the stochastic 

calculus and a variational principle applied to information entropy to patch together a 

picture for the dynamics that intertwine at different levels of organization (Lerner, 1998, 
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2003, 2006).  He labels this formalism informational macrodynamics (IMD).  The 

premise of this framework is as follows.  In complex systems, and invariably, in CMASs, 

interactions occur simultaneously between agents (particles).  Because of the large 

conglomeration of this dynamic, an amount of emergent collective indeterminancy is 

created not possible through independent relations only.  This dynamic appears at all 

levels of the organism.  At a given observer level, these are manifested in the relative 

macro and microlevels of that observer level.  In this respect, for a given dynamic 

organizational structure, there exists many relative micro and macrolevels, and hence 

many relative mesolevels of existence.  

Even in a discrete representation of an organization, an infinite number of 

observer levels are possible and hence an infinite number of relative macro, meso, and 

microlevels may exist.  Moreover, given an observer level, the may exist an infinite 

number of macro, micro and mesolevels.  What this really means is that a chain of 

intermediate ordered levels exist for an observer level.  Therefore, it would not make 

sense to declare a certain level as meso, micro, or macro without referring it to a relative 

observer level and without reference to its predecessor and successor levels within that 

observer level.  In this dissertation, relative to a given observer level, the term microlevel 

will refer to a predecessor level, macrolevel to a successor level, and mesolevel to a 

proximate level.  

Lerner posits that the microlevel dynamics are more closely dictated by 

irreversible stochastic processes, while those at the macrolevel are more akin to 

thermodynamic processes.  His proposed model is a macrolevel functional that consists 
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of a Markov chain evaluated using a path integral (Feynman sum of histories) in which 

contributions from local functionals, which are the interacting agents, are made via an 

application to information entropy using a variational principle (VP).  The microlevel 

models are dictated by Itȏ stochastic processes that satisfy an Itȏ stochastic differential 

equation.  The VP is the responsible mechanism for inter-level dynamics.  The key 

operation in the exchange of information between levels is the application of the VP in an 

informational form in a macrolevel Shannon entropy functional.  This process chooses an 

optimal macrolevel or macrodynamic model based on the transfer of information from 

the Itȏ stochastic processes that govern at the agent microlevel. 

Microlevel processes, ( ): 0 1tX X s t T= ≤ ≤ ≤ ≤ where each random variable is 

n-dimensional, are to be modeled by an Itȏ stochastic differential equation of the form: 

 
[ ]

( , ) ( )

 on = , , 0 1 (initial conditions)

t t t t t t t t t

T

s s

dX a X U dt X dW F X

X s T s T

σ

η

= + =

= ∆ ≤ ≤ ≤
 (3.189) 

with drift function, ( , )
t

a X U , ( )
t t

U U X= feedback control functions (control knobs), and 

t
W  a Weiner process with diffusion operator, 

1
( )

2
T

tb X σσ= .  Underlying this is a 

probability space, on the interval, [ ]0,T , ( , , )PΩ � , ( )t� a nondecreasing family of 

sub- -algebrasσ of � .  The Wiener process, t
W  is w.r.t. 

( ) ,  t t T≤� and ( ): 0 1tX X s t T= ≤ ≤ ≤ ≤ are continuous functions on [ ],s T with the 

-algebraσ 1 ( )Xσ=� .  In general, set ( : )
t s

X s tσ= ≤� .  Additionally, ( )
t

a X and ( )
t

b X
 

are -measureable
t

�  functionals and η is 0 -measureable� .  Assume that a solution to 
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(3.189) is tXɶ . tXɶ will be compared to the Weiner process, t
W  using a measure of 

(neg)entropy between two processes.  This will give a measure of how far tXɶ is from 

disorder, i.e., a measure of information about the microprocess solution.  To this end, 

define the entropy functional on solutions of (3.189):
 

 ( )
def

1
( , ) ( , ), ( , ) ln( ( )) 0

sX B s TS X s T M q X
− = ≥ 
ɶ  (3.190) 

where 

 [ ]( , ) ( , )s sX B X B

B

M y yp dω= ∫  (3.191) 

and 

 ( , )
( , )

( , )

( ) ( )s T

s T W

s T

dp
q X X

dp
=
ɶ

ɶ ɶ  (3.192) 

Here, ( , ) ( )s Tq Xɶ is a measure of the difference between the probability density of the 

solution, tXɶ , pɶ , and the probability density,  W
p of the transformed process t

W  

in (3.189).  B is a Borel-measureable subset on [ ],s T .  One may see that S is a 

divergence measure between solution processes of (3.190) and the transformed process, 

t
W  .  Furthermore it is based on the Shannon entropy, i.e., S is the KM-divergence 

between solutions of  (3.190) and its underlying transformed process t
W .  One may 

proceed to generalize this divergence by the use of classical versions of the divergences 

of the form (3.88).  

Next, a formal Hamiltonian operator will be defined for the solution processes.  

Consider the positive additive functional defined on the space of solutions, tXɶ : 
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2

1 11
( ) ( , ) ( ) ( , ) 0

2
T
s

T T

t t t t t t t t t t t
s s

X a X U dW X a X U dtω σ σ− −

∆
= + ≥∫ ∫ɶ ɶ ɶ ɶ  (3.193) 

The Radon-Nikodym derivative w.r.t. the solution and transformed probabilities can then 

be written as: 

 
( , )

( , )

( , )

( ) ( )
T
s

W

s T

s T

s T

dp
X e q X

dp

ω
∆

−
= =ɶ ɶ

ɶ
 (3.194) 

Define the Lagrangian operator: 

 
†( , ) ( , )1

2 2 ( )
( , )

T
a X U a X U
t t dt

t b Xs t

L X U = ∫
ɶ ɶ

ɶ
ɶ  (3.195) 

Then an entropy functional, S, can be expressed as: 

 ( ) [ ]

def

( , , )
, ( , ) ( , )  

s

T

tX s Ts
S X s T M L X U dt =  ∫ ɶ  (3.196) 

Optimization of this entropy leads to a “regularization to macro order” established for the 

random observations, t
X .  This divergence can be viewed as a functional that is 

dependent on the diffusion operator, t
b  and one writes ( ), ( , )

tbS X s T S= .  Next, one 

utilizes the variation minimax principle on
tbS .  The extremal trajectories of t

X will 

dictate the macrolevel process, which will produce a proper probability for the entropy 

functional, hence producing a proper entropy functional PF
S of the macroprocess.  The 

canonical form of a conservative system, i.e., one in which [ ] 0
t

div G = , is a Hamiltonian 

system obeying the Hamilton equations.  Let ( , )
t t

X Ψ  be the phase space coordinates, 

where tb

t

t

S

X

∂
Ψ =

∂
.  Then the Hamilton equations are: 
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,t

t

t

t

HX

t

H

t X

∂∂
=

∂ ∂Ψ

∂∂Ψ
=

∂ ∂

 (3.197) 

Together with the differential constraint condition, †( , ) 2 0t
t t t t

t

C X
X

∂Ψ
Ψ = + Ψ Ψ ≥

∂
, the 

macrodynamic model is regularized.  Here H is the ensemble average value of H over 

the trajectories, t
X .  The solution to this Hamiltonian system is: 

 
† 1

( )
2

t t
t t

t

dX
H t b

dt X

∂Ψ
= Ψ =

∂
 (3.198) 

At this point, a time discretization is performed so that the differential constraint 

condition and the Hamiltonian above, are imposed at a lattice of discrete time points.  

These points then define nodes and form an information network in time.  Evolutional 

operators become matrices.  Information transfer from microlevels to macrolevels is 

optimized when information loss in H is minimized (Lerner, 1998).  Now, construct a 

double-coping feedback control mechanism (vector), v and conjugate vectors possessing 

a macro model process, ( )A t defined on the discretized points 1[ ,,, ]
n

t t t∈ as: 

 

( ( ))
,

2

( ) ( ) ( ),

( ) ( ),  where ( ) , 1,...,

( ) 2

t
t

t

i i i i

t

A X v t

b

A t v t u t

A t t t j i n

v t X

λ λ α β

+
Ψ =

=

= = − =

= −

 (3.199) 
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This leads to the formulation:

0

( )
2

t

t

t

b
A t

b dt
=

∫
, which in turn, leads to the macromodel 

differential operator: 

 ( ( ))t
t

dX
A X v t

dt
= +  (3.200) 

Using a variational principle, if n n

n

aφ ψ=∑ is a normalized wavefunction (mixed 

quantum state) and H the Hamiltonian, then | | gH Eφ φ ≥ where
g

E is the ground state 

(lowest energy state).  Hence, if ( )
| |

|

H
ε

Ψ Ψ
Ψ =

Ψ Ψ
, then 0Eε ≥ .  This is the target for 

an approximation to a ground state and the variational minimax problem of finding a 

greatest lower bound ground energy. 

Topoi and Categorification of Information Systems 

In the development of every subfield in mathematics, a specific population of 

objects and relationships is normally built out of an axiomatic system of expression.  

Mathematical logic systems are not immune from this pattern.  In an attempt to bridge 

this reoccurring phenomenon, category theory was developed by MacLane (1945) and 

others.  Categories are objects that consist of general patterns for set-like objects and 

mappings called morphisms between these set-like objects. They are more general than 

the usual set-theoretic notions taught in elementary math.  Moreover, they set patterns for 

all mathematical am dlogical systems.  Appendix D encapsulates the basic elements of 

category theory leading to the specialized version called topos theory that emulates our 

physical notions of set theory. These will then be generalized for systems representing 
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quantum gravity and information.  These generalizations will then help in the overarching 

description of info-holarchies in this study. 

Definition. Topoi (plural topos) is a mathematical generalization to "things" that 

possess the following structures: 

1. an initial empty object, such as would be the null or empty set, ∅ , 

2. terminal objects which are akin to singleton sets, 

3. colimits which generalize binary coproducts which, in turn, generalize to 

the disjoint union of sets, 

4. limits which generalize binary products which, in turn, generalize to 

Cartesian products of sets, 

5. equalizers which generalize to sets where mappings agree on, 

6. coequalizers which generalize to quotient spaces so that for functions, 

, :f g Y X→ , ( ) and ( )f y g y are identifiable, 

7. set exponentiation in which the set of all functions mapping one set to 

another is identified, 

8. generalized subset functions mapping a set into{0,1}which is a way of 

identifying its subsets and when generalized maps into a more general 

truth value space, Ω  which may consist of more than FALSE and TRUE 

values, such as in fuzzy and probabilistic, and degrees of belief systems 

(Baez, 2006). 

Presheaves are now to be defined as categorical structures needed to represent 

physical systems in quantum gravity and fields.  A presheaf is a covariant functor, f , 
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that maps a category, � to the set category, SET .  Let Set
� denote the category of such 

presheafs on � with the following behavior for its maps: 

 

 

Figure 12. Presheaves 
 

where X and Y are presheaves of � , 
A

N and
B

N are natural transformation between X and 

Y such that for ,A B objects in � and f an arrow in � , the above diagram commutes.  

Intuitively, the maps
A

N and
B

N give a notion or “picture idea” of what X is within Y for 

objects in �  (Isham, 1999).  There is a more functional definition of a presheaf 

on � using the useful notion of sieves.  Define a sieve on an object of � , A, as a 

collection, � of arrows, :f A B→ in � with the following property: if f ∈ � and 

:g B C→ , an arrow in � then the composition arrow :g f A C→� belongs to � .  Sieves 

draw in arbitrary arrows in composition.  A presheaf can now be defined as: 

Definition. A map :γ →� ��� is a presheaf on � if for any A an object 

in � with ( )Aγ being defined as the set of all sieves on A, and if :f A B→ , 

then ( ) : ( ) ( )f A Bγ γ γ→ is defined as { }( )( ) : | ,  ( ).f S h B C h f S S Aλ γ= → ∈ ∀ ∈�  
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A consequence of these definitions is the following: 

Definition. The set of all arrows in � whose domain is an object ( )B dom∈ � is 

called the principle sieve on B denoted by B↑  and can be described as: 

{ } { }( )( ) : | :f S h B C h f S h B C Bγ ≡ → ∈ = → ≡↑�  

The set ( )Aγ of sieves of A has the structure of a Heyting algebra and hence can represent 

a general distributive lattice with null and unit elements that is relatively complemented.  

Heyting algebras, in turn can then represent an intuitionistic semantic logic structure  first 

developed by Kripke (1965), generalizing a Boolean algebra and logic for quantum and 

fuzzy structures.  More to this point, it has been shown that quantum probability logic 

structures are special cases of fuzzy probabilistic logic structures (Pykacz, 1994; Mesiar, 

1995).  This will be revisited after a review of a concept of generalizing uncertainty and 

its expressions and language representations. 

 To tie into the previous review of the physical discrete model to be used in this 

discussion for information systems, namely that of spinfoams and spin networks, a final 

aspect of category and topos theory with respect to topological models of quantum 

physics, topological quantum field theories (TQFT) will be presented.  Define an n-

dimensional manifold, ':M S S→ , that describes that portion of spacetime between two 

(n-1)-dimensional manifolds representing two different spacetime states of a system, S 

and '
S .  M is called a cobordism from S to '

S .  M acts as a time surrogate operator in the 

sense of being representative of the time that has passed between the spacetime states S 

and '
S .  With this definition of state transition, time is a topological change.  The set of 
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cobordisms between S and '
S  form a noncommutative group under the operation of 

composition.  This group represents the various ways in which a time-like sequence can 

proceed between states in spacetime.  In the following, Baez is used in the discussion of 

spinfoams, TQFTs and their category theoretic aspects (Baez, 1999).  Spinfoam models 

represent versions, albeit promising models of TQFTs for quantum gravity, the attempt to 

unify general relativity (GT) and quantum mechanics (QM).  TQFTs map structures from 

differential topology, i.e., smooth manifolds, and hence structures from general relativity 

to corresponding structures in quantum theory.   

Cobordisms display something about how the macrodynamics of large scale 

relativistic objects react or relate to the microdynamics of small scale quanta.  TQFTs 

map Hilbert spaces of the spacetime state vectors of a spacetime manifold S, denoted 

by ( )H S  to S.  In doing so it maps Hilbert spaces to other Hilbert spaces representing two 

different manifolds of spacetime.  It uses the cobordism between two spacetime 

manifolds, ':M S S→ to do this assignment.  Let '( ) : ( ) ( )H M H S H S→ denote this 

mapping so that if ψ is the state of S.  Then ( )H M ψ is the transformed state of '
S .  This 

mapping of the TQFT preserves compositions and identity of the cobordisms.  In 4-

dimensional quantum gravity represented by spinfoams at the Planck scale, the network 

is separated by tetrahedra with faces that represent the connecting spacetimes S and '
S .  

The topological mapping, '( ) : ( ) ( )
SF

H M H S H S→  corresponding to the spinfoam TQFT 

is defined via transition amplitudes for each cobordism, M, between S and '
S .  These 

complex-valued amplitudes are summed up over all such tetrahedron to get the total 
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transition amplitude from a stateψ  of S to a state 'ψ of '
S .  By requiring that (1 )

S
H be the 

identity in the subspace '( )H S S⊂ , then the spinfoam TQFT mapping preserves a 

subspace identity.  This TQFT mapping is preserved without regard to how the tetrahedra 

are developed.  It is invariant with respect to this discretization.  

In 4-D quantum gravity, the triangle faces are tetrahedra and the tetrahedra are 

hyper-tetrahedra.  Denote the topoi of cobordisms between (n-1)-dimensional manifolds 

by nCob and that of Hilbert spaces by Hilb.  Then the TQFT :H nCob Hilb→ is a 

functor between the two topoi.  Most importantly, a TQFT maps aspects of quantum 

theory with those of geometric spacetime.  To consider the structure of binding these two 

paradigms of physical reality one uses the relations between these functors, that is, 

functors of TQFTs and other functors of morphisms between physical systems.  

Consider now an iterative process of defining functors of functors, that is, a 

continuing categorification of functors, leading to n-categories.  This iterative 

categorification leads to a way of examining higher order structures of maps between 

system models, in this case, those of quantum theory and general relativity.  This can be 

generalized further to investigate relationships or maps between any two formal systems 

of logic, set theory, or component systems in general.  This would include the specifics of 

HMASs and other complex adaptive multiagent systems.  In other words, a formalism of 

a general system can be represented as a system topoi, denoted by Sys, under appropriate 

operations acting on subsystems of and component systems within it (Doring & Isham, 

2008).  Propositional and higher order type languages dependent on the system S, 

denoted by ( )S�� and ( )S� respectively, can be attached to such topoi in order to give 
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them the rigor of formalized deductive logical systems such as the intuitionistic and 

paraconsistent logics mentioned before.  Proceeding up the ladder of n-categories of an 

original system,
m

Sys  of dimension m, each successive higher level of morphisms and 

objects adds one dimension.  For example, a 0-category would be a regular set.  The 1-

category above this would be a category with the sets as objects and set functions.  The 2-

category above this would be a 2-category of morphisms of set functions and in so doing 

would define how those set functions in the 1-category are isomorphic.  These successive 

constructions continue upward.  Hence, in order to more closely study the structure of an 

n-category, one must go to the (n+1)-category.  In the study of physical systems, 

proceeding as such to the next categorification leads to a clearer picture of the morphisms 

of the prior physical system.  This is the key to melting together a comprehensive 

structure for quantum gravity from QM and GR, and hence, in general between any two 

representations of reality or of systems, including logic information systems.  This is a 

tool for the study of information systems as field and particle theories in this discussion.  

Information is influenced and driven both by quantum and geometric relativistic effects. 

Generalization of Uncertainty 

In the preceding discussions on information measures, entropy, and complex 

adaptive systems, uncertainty was introduced most ostensibly through a probabilistic 

axiomatic system.  In this section a review of an attempt to generalize concepts of 

uncertainty that subsume probability will be done.  This construct will then be applied in 

an analogous attempt to generalize uncertainty in quantum probability and quantum 

systems in the next chapter.  
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Zadeh has given a proposal for a generalized theory of uncertainty (GTU) in 

which notions of uncertainty including: (a) probabilistic, (b) possibilistic, (c) veristic, (d) 

usuality (fuzzy probability), (e) random, (f) fuzzy graphic, (g) bimodal, and (h) group 

types of uncertainty are modeled through a generalized constraint model.  

Complementatry to this, a generalized constraint language (GCL) consists of all 

generalized constraints coupled with the rules for qualification, combination, and 

propagation.  A generalized constraint (GC) is a triplet of the form ( , , )X r R  where X is a 

constrained variable, R is a constraining relation, and r is an indexing variable which 

identifies the modality or type of constraint semantics (Zadeh, 2005).  The index list 

consists of the following pneumonic: r blank= , possibilistic, r p= , probabilistic, r v= , 

veristic, r u= , usuality, r rs= , random set, r fg= , fuzzy graph, r bm= ,bimodal, 

and r g= , group variable.  A formal uncertainty language such as a GCL calculates 

precisiations (the mapping of a vague measure into a precise number) more readily than 

formalized logics.  Constrained variables, R can take the form of: (a) a general m-vector, 

(b) a proposition, (c) a function, (d) a function of another variable, (e) a conditioned 

variable, (f) a structure, (g) a group variable, or (h) another generalized constraint.  Bi-

valent conjunction, projection, and propagation operators, 
c

⊗ ,
proj

⊗ ,
prop

⊗ respectively 

act on two (possibly different) GC objects, 
1 1 2 21 2(  _  ), (  _  )

k j k j
X is i R X is i R to generate a 

third (possibly different) GC object 
3 33(  _  )

k j
X is i R .  

A GC object, ( , , )g X r R= , is associated with a test-score ( )
g

ts u which associates 

an object u (which the constraint is applicable to), a degree to which u satisfies the 
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constraint.  The test score defines the semantics of the constraint that is associated with g.  

The value of ( )
g

ts u  may be a point in the unit interval, [ ]0,1 , a vector, or other 

mathematical structure such as a member of a semi-ring, lattice, poset, or bimodal 

distribution.  The relation, R from g is allowed to be nonbivalent, as in a fuzzy 

equivalence.  In this way, a GC generalizes a fuzzy set and so, a GCL can lead to a 

generalized fuzzy system of generalized constraints.   

Zadeh presents a precisiation natural language (PNL) as a means of assigning 

precise meaning to a proposition drawn from a natural language (NL) through a GC.  The 

PNL is then a mapping, :
PNL

p gΓ → from a proposition, p to a GC, ( , , )g X r R= .  

Hence, information, in general, is representable as a GC because a proposition is a carrier 

of information, being a potential answer to a question.  Let S be a system.  Let SΡ  be the 

space of all propositions in S, Sϒ the space of GCs in S, and ( )
PNL

SΓ , the mapping 

assigned to a PNL for S.  Then ( )
PNL

p SϒΓ ∈ for a precisiable proposition p in S.  Denote 

the space of precisiable propositions of S by '
SΡ .  In general, '

S SΡ Ρ⊂ for NL systems.  Let 

GCL
S be the space of all GCs of S.  Then

GCL
S is more expressible relative to S, than a first 

order logic, modal logic, Prolog, and LISP is to S, if S is a NL.  Because quantum logics 

can be derivable as a family of subsets of fuzzy probability structures (using Lukasiewicz 

operators), a GCL can be formalized for it, though quantum probability may be framed as 

a generalized probability theory as well (Cohn, 2007).  The importance of this is that any 

quantum logic (logical system), L, with an ordering set of probability measures, S, are 

isomorphic (representable) in the form of a family of fuzzy subsets of S, ( )S� , satisfying 
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certain conditions, including the use of Lukasiewicz operators instead of Zadeh’s 

operators on fuzzy sets (Pykacz, 2007).  Hence L is representable by a GCL.  In this 

sense, quantum logics are special cases of (and isomorphic to) fuzzy probability logics 

and so are in the realm of a GCL representation.   

Does this GTU represent a kind of generalized logic in the taxonomy of algebraic 

logics? In other words, can the GTU transcend a spectrum of the algebraic hierarchy of 

logics, which include fuzzy and quantum logics, and of other duals to these, notably 

referred to as dual-intuitionistic logics or paraconsistent logics? Paraconsistent logics are 

logic systems that formalize inconsistent nontrivial logics in the sense of the rejection of 

the principle of explosion (noncontradiction), the premise that anything follows from 

contradictory premises (Béziau, 2000).  The principle of explosion is as follows: for a 

proposition p, and an arbitrary claim A, 

 (premise)

 (conjunctive elimination)

 (weakening for any A)

 (conjunctive elimination)

 (disjunctive syllogism)

 (conclusion)

p p

p

p A

p

A

A

∧ ¬

∨

¬

⇒

 

Paraconsistent logics overcome Gödelian limitations, i.e., incompleteness of axiomatic 

systems.  In addition, because they are accepting of the truth or falsehood of both a 

premise and its negation, they are flexible in overcoming other seemingly paradoxical 

physical theories such as the quantum nature of long range gravitational influences or 

macroscopic and mesoscopic entities.  In this regard, this discussion places interest in this 

aspect of a paraconsistent logic in the formation of a new physical information theory 



 

 

206

based on possibly inconsistent, but nontrivial fields and particles of information. 

In the following discussion, a topoi is developed for fuzzy sets.  By using the GC 

structure, a topoi for a GC can be built around this procedure . The general direction 

given by Plotkin will be followed for the Higgs topos, SET(H) defining a fuzzy set-

theoretic topos (Plotkin, 1994, pp. 108-112).  Let P be an arbitrary linearly ordered set 

with first element 0 and last element 1.  P equipped with such elements can be considered 

a lattice and in particular a special algebra called a Heyting algebra which is a sound and 

complete multilogic intuitionistic and fuzzy (IF) generalization to a Boolean algebra 

(Clote & Schwichtenberg, 2000).  IF logics are a basic form of more general logic 

structures based on t-norms.  A t-norm is a function, :[0,1] [0,1] [0,1]t × → satisfying the 

axioms: 

1. commutativity, ( , ) ( , )t a b t b a= , 

2. monotonicity, ( , ) ( , )  and bt a b t c d a c d≤ ⇔ ≤ ≤ , 

3. associativity, ( , ( , )) ( ( , ), )t a t b c t t a b c= , and 

4. existence of an identity, i.e.,  element 1 ,   ( ,1 )  
t t

t a a a∃ ∋ = ∀ .  

5. continuity in[ ] [ ]0,1 0,1× , although left-continuity suffices for most fuzzy 

systems. 

The structure [ ]0,1 , ,1
t t

H t =   is then defined as a commutative totally ordered monoid.  

More deeply, the t-norm induces a natural residuation, denoted by 
t

→ , so that the 

updated residuated structure, [ ]' ,t t tH H= → , becomes a commutative naturally ordered 

residuated monoid, also known as a hoop (Agliano, Ferreirim, & Montagna, 2007).  A 
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residuation, denoted by the symbol
t

→ , is a binary operation defined 

as: [ ], 0,1 ,x y∀ ∈ [ ]
'

sup | ( , )
t

t
z H

x y z t z x y
∈

→ = ≤ .  The residuation,
t

→ is the pointwise largest 

function such that: 

, ,  ( , ( ))x y t x x y y∀ → ≤  

the t-norm logic version of the modus ponens rule of inference for logic systems.  Recall 

that the modus ponens rule of inference for classical logic states that: 

If  then .

 is true

therefore  true

P Q

P

Q

  

The residuation is therefore the weakest function that would imply that its generated t-

norm logic structure has a valid truth function for implication in a generalized fuzzy logic 

system.  It legitimizes the t-norm generated hoop structure as a functional fuzzy logic 

system.  An equivalence property of a residuation is: [ ], , 0,1x y z∀ ∈  ( , )t x y z≤ if and 

only if x y z
t

≤ → .  This is a generalization of the two-valued (Boolean) logical 

conjunction.   

Using this general notion of a t-norm based logic, multivalued logics are formed.  

Fuzzy systems are one such specialization of these t-norm systems.  An n-ary 

propositional connective is a function, [ ] [ ]: 0,1 0,1
n

c
F → that generalizes the t-norm for 

multiple propositional operations.  For generalizing Heyting algebras, a t-norm can be 

introduced to generate semilattice structures, the so-called t-norm algebras.  More 

specifically, in a Heyting algebra, H , (i) every pair of elements, ( , )a b  has a pseudo 
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relative component (rpc), that is, a greatest element, c in the ordering of H such that 

a c b< ≤ where < and ≤ are the ordering and strict ordering operators of H respectively, 

(ii) H possesses a zero element, and (iii) H is a lattice.  Define a residuation 

operation→on H by:  

1 if p q,

if 
p q

q p q

≤
→ = 

>
 

Equiping H with this operator results in an rpc lattice.  Let Ω  be the universe of discourse 

space of truths, which could be the interval[0,1] .  Define ([0,1], )H = ≤  where ≤ is a 

natural ordering.  Then H is a complete Heyting algebra because greatest upper and lower 

bounds exist for every subset of H.  The definition of fuzzy equality of elements will be 

defined.  Assume that ( , )H = Ω ≤ is a complete Heyting algebra.  Let A be a set, which in 

a category is an object of the category of a set, SET.  A fuzzy -equalityΩ in A is a 

mapping, A A× → Ω , denoted by ( , ) [ ]x y x y→ ≈ , where [ ]x y≈ ∈ Ω  such that the 

inequalities (i) [ ] [ ]x y y x≈ ≤ ≈ and (ii) [ ] [ ] [ ]x y y z x z≈ ∧ ≈ ≤ ≈  hold for every , ,x y z A∈ .  

The pair ( ,[ ])A ≈ is then a fuzzy set.  Let ( ) [ ]E x x x= ≈  for each x A∈  and define an 

equivalence operator, ≅ by [ ] [ ( )] [ ( )] [ ]x y E x E y x y≅ = ∨ → ≈ .  In this sense a fuzzy 

equality is the same as a fuzzy equivalence relation.   

The Heyting algebra, ( , )H = Ω ≈ can be regarded as a fuzzy set with the 

membership map Ω× Ω → Ω given by  

[ ]p q p q≈ = → ,for ,p q ∈ Ω and ( ) ( )p q p q q p→ = → ∧ → .  Now define a category 

using ( , )H = Ω ≤ .  Let ( , ), ( , ) -setA B= ≈ = ≈ ∈ Ω� � and define a morphism :f →� � as 
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a mapping :f A B× → Ω satisfying the conditions: 

1. [ '] ( , ) ( ', )x x f x y f x y≈ ∧ ≤ , 

2. ( , ) [ '] ( , ')f x y y y f x y∧ ≈ ≤ , 

3. ( , ) ( , ') [ ']f x y f x y y y∧ ≤ ≈ , 

4. [ '] ( , )
y B

x x f x y
∈

≈ = ∪  

for , '  and , 'x x A y y B∈ ∈ .  Use the notation, ( , ) [ ( ) ]f x y f x y= ≈ to give a measure of the 

equality potential of ( ) and f x y .  Next, define the equality of morphisms.  Let the 

morphisms, , : ( , ) ( , )f g A B= ≈ → = ≈� �  be equal if their respective “fuzzy 

graphs”, , :f g A B B× → coincide.  Define the composition of the arrows 

: ( , ) ( , )f A B= ≈ → = ≈� � and : ( , ) ( , )g B C= ≈ → = ≈� � by a mapping 

: ( , ) ( , )g f A C= ≈ → = ≈� �� where: ( , ) ( , ) ( , )
y B

g f x z f x y g y z
∈

= ∧� ∪ for

, ,x A y B z C∈ ∈ ∈ .  This composition implies  such that ( )  and ( )y B f x y g y z∃ ∈ = = .  It 

has been shown that ( , )H = Ω ≈ is a topos (Higgs, 1973). 

 The GTU employs a formalism that accommodates known fuzzy, probabilistic, 

and classical uncertainty measures.  A question arises about how one could or should 

compare each type of uncertainty.  Klir (2006, pp. 387-388) proposed the notion of the 

principle of information invariance.  This is a study in the space of transformations 

between the various frameworks of uncertainty.  In order for one theory of uncertainty to 

be comparable to another a space of invariant transformations must be found between the 

two.  Geometric and topological evolutions between the two may then be found in a quest 
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to compare informational prowess of each.  A notion of generality can also be 

constructed based on these transformations.  More specifically, let 1 2 and T T be two 

uncertainty theories.  Suppose that 2T is less general than or incomparable to 1T .   Now let 

, 1,2
i

u i = be corresponding uncertainty functions of the respective theories.  These 

functions measure the uncertainty of a given phenomena to be estimated.  The function, 

2u will be used to estimate the function, 1u .   

The principle of information invariance then posits that the amounts of 

uncertainty in 1 2 and u u must be the same or to an approximate equality.  Let F be a 

transformation from 1 2 to T T and let ( )
i

U u be the amount of uncertainty measured for 

function 
i

u .  Then for F to be invariantε − w.r.t. U, 1 2( ( )) ( ( ))
T

F U u F U u ε− < , for 

some sufficiently small 0ε > and suitable metric norm, 
T

 on the space of 

transformation.  In an ensemble theory of uncertainty, multiple runs of an experiment are 

collected so that n trials are present.  If both theories employ ensembles, then ε will 

depend on the sample size, n.  Hence, one can utilize an asymptotic process and then 

1 2( ( )) ( ( )) 0n n

nT
F U u F U u ε− < → for comparable theories.  Examples of these 

comparisons are done between probability measures and graded possibilities and others 

in Klir (2006, pp. 390-398). 

General Semiotics 

 To this point Shannontype information theories have been reviewed and discussed 

as the foundation for objectively measuring information content and flow in channels.  



 

 

211

The approach of Shannon and others in that genre have concentrated on the physical 

transformation of data.  This definition of information does not approach the problems of 

semantics, linguistics, and pragmatics of information.  Indeed, the receiver has not been 

given any avenue for feedback or interpretation on the stream of information involved.  

This is an incomplete framework for a generalized theory of information and prevents a 

systemic definition of information from being formed (Callaos & Callaos, 2002).   

 Admittedly, a relativistic measure, semantics plays an important role in the 

transformation of information from one quasi-mind to another.  Here the term quasi-mind 

is used as a generalized computing device that is a self-aware system (SAS).  Human 

brains and their consciousness are an example of such.  This study will discuss other even 

more powerful examples of quasi-minds.  Without a measure of semantics, no meaning 

can be attached to an information stream from source to receiver.  Additionally, the 

pragmatics of such streams is left waning for the receiver interpretation of purpose.  With 

these dilemma came the study of semiotics.  Semiotics has been obligatorily defined as 

the study of generalized signs.  Signs are a placeholder for the conveyance of meaning 

between a source and receiver.  Specifically,  de Saussare first defined a sign as 

consisting of two components, a significant and a signifier (de Saussure, 1916 ).  The 

significant is the thing that stands for something other than itself.  A signifier is the 

mechanism that gives meaning to the representation of the signifant.  This is a dyadic 

representation of semantics.  Injecting more rigor into the idea of signs, Peirce introduced 

a triadic system of signs.  In his model, a sign or semiotic triad consisted of (a) an icon or 

representamen, (b) an object, medium or index, and (c) an interpretant or symbol (Peirce, 
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1931).  Peirce categorized entities according to these three components of a triad as 

having the properties of (a) Firstness - representamen, (b) Secondness - object, and (c) 

Thirdness - interpretant. 

In this triad, a representamen, denoted as
i

R where i depicts the ith triad, is an 

entity that represents another entity as a potentiality.  The object, denoted by, 
i

O , is an 

instance or actualization of that representamen.  Finally, the interpretant, 
i

I is the 

manifestation or patternizer of the representamen, a metapattern for the sign of the traid. 
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Figure 13. Semiosis chain 
  

 Peirce viewed each of these entities as processes rather than structures.  A triad in 

isolation has no particular importance because an information piece is propagated 

through a chain of semiosis or semiotic chain which is a sequence of correlated semiosis 

triads.  One triad is linked to another by the following transformation: the interpretant of 
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the i-th triad, 
i

I  is the representamen of the (i+1)-th triad, 1i
R + and the representamen of 

the i-th triad,
i

R  is the object of the (i+1)-th triad, 1i
O + .  Two triad functions are 

defined,
i

f and
i

g .  The function
i

f acts as the preparation operator for creating an object 

instance from a representamen.  The function
i

g serves as a detection operator for 

developing an interpretant, the idea presented to the quasi-mind, the interpreter of the 

sign via a form pattern from the object.  This form entity is a pre-pattern that is auxiliary 

to the object instance in forming an interpretant.   

 Semiotic models have been developed for biological systems (Queiroz, Cklaus, & 

El-Hania, 2007).  These may be generalized to nonliving entities including quasi-minds 

such as digital processors.  Semiotic models may also be built for quantum systems in the 

following manner.  In a general quantum system, the representamen is given by the 

Schrödinger equation:  

                                             0( ) ( )
t

i t H tψ ψ∂ =ℏ                                          (3.201) 

where 0H is the Hamitonian operator corresponding to the energy of the system and 

( )tψ is the system state variable at time t.   Alternatively, the Heisenberg equation may be 

used: 

                                        
[ ]0( ) ( ),

d i
A t A t H

dt
= −
ℏ                                       (3.202)

 

where A and 0H  are operators defined over a Hilbert space 0� .  Here the operator, A 

evolves in time.  Both equations are governed by probabilistic dynamics and as such play 

out the potential for the quanta.  They are therefore the representamen for the quantum 
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system.  The measurement operators, given by { }Mω ω∈Ω
acting on the quantum system 

serve as the object of the semiosis triad since they instanciate a realism for the quanta.  

Finally, the set of eigenvalues, the eigenspectrum{ }iλ corresponding to the quantum 

eigenstates{ }i
ϕ of the system generalize or present with a metapattern for the quantum 

system, the interpretant. 

 In this study an abstract physical basis for generalized information will be 

constructed based on (1) an information particle, referred to as an informaton, (2) an 

accompanying information field theory, (3) an information process described by an Itô 

diffusion, under the premises of generalized uncertainty (GTU), and (4) a new causal 

framework for probability—the causaloid. In contrast to this, in situation-semantic 

studies of information, relative situations involving a physical condition in an exchange 

of information using natural languages between entities are analyzed (Barwise & Perry, 

1980; Barwise, 1989). Attempts at representing (situational) information as abstract 

nonphysical particles have been attempted, most notably by Devlin (1995) through 

concept objects called infons. In situational logic, object types are given by individual 

entities, 
i

a , relations between these individuals, R, spatio-temporal coordinates, ( ),x t , 

situations, s, and v, a representative of classical truth values, T or F.  Situations, 

{ } ( ), , ,
i

s R a x t=  are given by a relation, R between individuals, those individuals, 

{ }ia and a spatio-temporal coordinate, ( ),x t .  Each of these type objects can have 

parameter spaces, basically specific instantiations of these types.  Formally, x is of type T, 

written as :x T .   
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 Infons are then represented as tuples,  { }, ,
i i I

R a vφ
∈

= .  Accordingly, an 

infon,φ  states that among the individuals{ }ia , the relation R holds or does not hold 

according to the truth value v. Infons are categories for situations.  While there may be 

abstract and concrete types of situations (i.e., nonactualized versus actualized) for infons, 

they are treated as concrete.  The situation s supports the infon, φ , written as |s φ= , if 

v T= inφ  when s dictates the individuals and relation in φ .  Essentially s factualizes the 

infon, φ .  There is an accompanying infon logical structure that satisfies closure under 

conjunction, disjunction, and bounded quantification over its parameter elements.  

Negation is not closed under infon structures.  Infons are semantic animals that have 

situations as support mechanisms.  Unless there are physical communication channels 

between infons, they do not have physical analogies.   

 This abstract definition of information is where this study’s version of 

information particles— informatons, parts from.  However, the advantage of the use of 

infons is in their independence from language or coding schemes.  Indeed, an infon, φ , is 

said to be a fact φ⇔ has been actualized or is real. For a real situation, s, one then has 

that |s φ= .  However, what is judged to be real in the universe, if not by physical or 

sensorial manifestation?  In this study, informatons are by contrast, described from first 

principles of nonclassical physics and both subjective (observer-interpretive) and 

objective information theories.  The descriptions of both semiotic chaining in Peircean 

(1931) semiotic logic and Devlin (1995) situational logic infons, can then be augmented 

to the structure of informatons, thereby correlating observer-based meaning and 
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situations to the objectivity of informatons in quantum gravity. This will be investigated 

and constructed in chapter 4. 

 Stonier (1990, 1992, 1996) in his trilogy on information physics proposed a basis 

for the existence of information particles he unfortunately also referred to as infons. 

Stonier’s infons differ dramatically from Devlin’s in that while both versions are 

hypothetical entities, Stonier uses analogies of energy and matter particles, bosons and 

fermions respectively, to propose his information particle—the Stonier infon. Stonier 

refers to infons as massless particles that are pure forms of information. Stonier 

extensively utilizes interesting analogies—heat is to energy what organization is to 

information. However, information is not directly defined in his infon structure except as 

transient, appearing in and out of existence depending on the speed at which other 

particles, theoretical gravitons, photons, etc., are propagated at (Stonier, 1990, 141-145). 

According to Stonier, his infons are trans-convertible between fermions and bosons. 

Nonetheless, no mention of fields of information is made or developed. In this study, 

informatons have structure, inhabit all of spacetime, and are given a field-theoretic basis, 

as well as a physical content transcending quantum gravity. Their dynamics are also 

described mathematically and applied to form a theoretical foundation for organization 

evolution. Informatons are persistent and exist as the basis of information flow for 

particles and forming organization.  This information flow dictates energy-mass-force. 

Evolutional Information 

 In an intriguing treatise on the universality of information as a means of 

describing all structure and process, Gershenson (2010) proposed eight axioms or laws of 
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information.  These eight laws together develop a picture of information as a universal 

language for constructing and describing the world and its dynamics. Although 

Gershenson does not provide a rigorous or technical definition of information, he uses it 

as a lingua omnimodus to propose building all phenomena. In this study, a similar notion 

will be posited with technical details on the composition of a particulate of information. 

Firstly, we review Gershenson’s notions for this universality of an information 

vocabulary. 

 Gershenson begins by using a definition of information and its observers from 

Umwelt (von Uexküll, 1957), expanding them to fit biologics and cognition, resulting in 

the construction of five overlying notions of abstract information and its carriers: 

(1) information is anything that an agent can sense, perceive, or observe, 

(2) an agent is a description of an entity that acts on its environment  

(3) the environment of an agent is the sum total of all the potential information it can 

perceive 

(4) living information is the ratio of information created by itself over information 

created by its environment 

(5) a system is cognitive if it knows something 

Using these fundamental notions, Gershenson then defines his two main categories of 

information: (1) first-order information – that information which is perceived directly by 

an agent, and (2) second-order information – that information which is perceived 

indirectly by an entity through other entities.  Here we generalize this notion by simply 

defining information of order n as information perceived by an agent indirectly through a 
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chain of n-1 prior information perceptions carried in sequence leading to the direct 

perception to that agent.  Additionally, this study describes this notion more technically 

through the concept of the info-holarchy – each holonic level in the info-holarchy 

perceives first order information within its own level. All other perceptions are of higher 

ordered information with the order dictated by the number of levels needed to propagate 

and capture that information.  Gershenson continues by classifying types of 

transformations of information into the following four groups: 

(1) dynamic – information which changes itself – objective-internal change 

(2) static – information which is perceived by an agent where the agent changes, but 

the information does not – subjective-itnernal 

(3) active – information which is perceived by an agent in which the agent changes 

the information – objective-external 

(4) stigmergic – information which is perceived by an agent in which the agent makes 

a change to the information before propagating it to other agents – subjective-

external (intersubjective) 

These are the laws of information transformation. The laws of information propagation 

are as follows: (1) autonomous – most information is self-propagated, (2) symbiotic – 

different information cooperate, (3) parasitic – information exploits other information for 

its own propagation, and (4) altruistic – information promotes propagating other 

information. Obviously, a random information chunk could have a combination of these 

traits to varying degrees, under varying environments. Gershenson’s third law of 
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information is that of requisite complexity – the ability to propagate succeedingly more 

complex information evolutionarily.  

 The fourth law is that of information criticality – the balancing between 

information stability and variability, in terms of nonlinear dynamics, that of approaching 

the edge of chaos regions in phase space, producing self-organized criticality or noise 

complexity.  The fifth law is posited as the law of information organization – the 

propensity to produce self-constraints when building structure in order to form 

organization that is advantageous to the pooled structure.  Organic systems display such 

properties in homeostatis.  The sixth law of information is that of self-organization – the 

propensity to organize in the most preferred or highly probable states.  This law is akin to 

the attractor basins in nonlinear dynamics. The seventh law is potentiality.  This law 

promotes the idea that agents of information may produce diverse amounts of 

perceptions, i.e., different meanings to the same information.  Evolutionarily, this may 

mean that the agent’s mutation and combination operators act on information to produce 

different spectrums of meaning. The eighth law of information is that of perception – 

each agent possesses a unique repertoire of operators to apply to some information in 

order to produce a unique spectrum of meanings. 

 Gershenson posits that these laws generalize evolutionary processes which 

include cognition and life dynamics.  Scales at which information is perceived are 

important because as the spatio-temporal scale decreases, information increases while as 

the scale increases, information decreases.  More succinctly, let ( )
s

A I be the amount of 

information potentially present at spatio-temporal scale s.  Then 
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0
( )s

s
A I

→
→ ∞ and ( ) 0s

s
A I

→∞
→ .  In other words, to occupy the whole universe, is to have no 

information, while to occupy nothing means to know all information.  In terms of an info-

holarchy, descending down levels one gains information potential, while ascending up 

levels one loses information potential.   

 This is a deceiving and oversimplistic viewpoint. Holarchies are self-similar.  

Additionally, a holon-agent in one holonic level is relativistic, i.e., another view of the 

info-holarchy produces a different holonic level occupied by that holon-agent.  Hence the 

scale may be relative to the process holonic level view, so the amount of information 

potential is relative - changing or gyrating similar to a gestalt perception.  Theoretically, 

through the notion of semiotic-chaining, a holon-agent or more precisely, an informaton 

in an info-holarchy, can be succinctly part of an info-chain that spans from Planck-scale 

levels to super-galactic or edge-of-universe levels, both physically and semiotically.  In 

info-holarchies, holon-agents and their information are part of the same entity, the 

informaton – consisting of an effective particle dual-pair, an observer entity, o, and an 

entity that generates information fields, e.  This structure attempts to describe information 

in terms of physical dynamics without a separate syntactic interpretation or license of 

what information is in relation to other characteristics of matter, energy, perception, 

cognition, or organics. 

Asymmetry as a Unification of Information Concepts 

 The various concepts of information as put forth by Shannon, Kolmogorov, 

Chaitin, Solomonoff, Carnap, Von Mises, Jaynes, and others, while holding to the general 
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dictum of counting states of existence, nonetheless are different, emphasizing varying 

points of contention. In an attempt to unify these concepts Muller (2007) proposes their 

unification using the symmetry groups of transformations acting on an information set.  

This achieves a central concept of asymmetry as a common description of information.  

One starts with Muller’s description of a system, S that is capable of distinguishing states 

of an object, Q; his information gathering and using system (IGUS): 

 

Definition: Let
Q

Θ denote the state space of an object Q, 
0

|tQ S Q
Φ ⊆ Θ denote the set of 

states of Q that can be discerned by a system, S at time 0t , and
1
|tQ S Q

Φ ⊆ Θ denote those 

states of Q that are discerned by S at time 1t . Then S is an IGUS iff 
0 1

| |t tQ S Q S
Φ ≠ Φ  

(Muller, 2007, p. 950-57). 

 

IGUSs are capable of distinguishing states of an object and hence of conceptually 

measuring information of that object.  This is a subjective definition of a distinguishing 

system, nonetheless it posits when a system is fine-grained enough to separate and 

distinguish information events.  Finally, Muller using an application of the Cauchy-

Frobenius Lemma, Frobenius (1887), to the finite group of symmetric transformations, G 

acting on a finite object set, Q , quantifies information content with respect to an IGUS S: 

 ( )( ) log log ,g

g G

I Q Q G
∈

 
= − 

 
∑  (3.203) 
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where g
Q is the subset of points q g∈ such that ( )g q q= ,i.e., the fixed points of g on Q 

(Muller, 2007, p. 1128-33,1128-34).  This equates the log of the number of orbits of Q 

acted upon by G to the information on Q.  Symmetries on a set show how information 

can be transformed invariantly, i.e., indistinguishable states.  Hence, the universal 

measure of information of an object set would be the asymmetries on that object set.  

This is a unifying feature of probabilistic and algorithmic-based information complexity 

measures.  This concept can be applied to quantum and GTU based information measures 

in an analogous manner, replacing the classical group symmetries, G with the group 

symmetries of the Hilbert operator transforms or of the more general GTU operators. 

Review of Methods 

 This study and theoretical development of a novel model for information and 

organization was constructed by utilizing hybrid grounded theory.  It included developing 

abstract mathematical concepts based on generalizations to prior models reminiscent of 

theoretical mathematics and physics.  This development was achieved through the use of 

induction and the expansion and generalization of models from contemporary studies in 

information theory, complexity sciences, network theories, organization theories, general 

uncertainty, theoretical physics, and higher order mathematical constructs from category 

and topoi theory.  The traditional methodologies from quantitative and qualitative social 

science research were abandoned in favor of a more holistic and pattern-based approach 

based on simulations and generated data sets that were compared to various natural and 

societal phenomena.  Simulation-based research methodologies are a relatively novel 

approach to social research and are better suited to answer the “what if” scenarios of 
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complex nonlinear and uncertain multiagent adaptive systems than traditional 

quantitative and qualitative methods (Dooley, 2002). 

Discussion and Conclusion 

 In this chapter a thorough review with discussion and expansion to suggestions 

was given on general information-theoretic concepts, various nonclassical approaches to 

such, as in the quantum, fuzzy, and generalized uncertainty theories, and bridges that 

connect microscopic theories of information to the macroscopic and mesoscopic 

approaches of complexity, specifically complex adaptive systems (CASs).  The Holonic 

approach to CASs, the holonic multiagent system (HMAS), was discussed in the context 

of generalizing organisms and self-aware systems (SASs).  The loop quantum gravity 

(LQG) approach to the physics of information adapting the spinfoam network 

methodology was introduced.  The further digitization of these models for quantum 

computation and information models of qudits was expanded upon as a possible avenue 

to approach a generalized information theory, along with the concept of an information 

field theory utilizing Bayesian methods for quantum signal processing via fields.  

Complexity was reviewed and approached from the lens of information theory, a 

prescribed unifying methodology in complexity studies. This approach blended with the 

overall theme of information as a forerunner to the physics of matter/energy and 

organization.   

 Finally, semiotics and situational semantics were reviewed as tools for adding 

semantic, pragmatic, and linguistic structure to the Shannonesque information content-

only approach.  An observer, a generalized brain or self-aware system expands the 
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definition of human interpretation, necessitating a part in any physical theory of 

information.  A classical communication channel is incomplete without a receiver.  

Physical amd mathematical realities are incomplete without generalized self-aware 

systems, a Copenhagen quantum-theoretic mantra.  However, quantum information, in 

and of itself was an incomplete approach to completing this requirement.  LQG-

spinfoams and networks, laced with the mechanisms for conveying super-quantum or 

generalized uncertainty information was suggested as a means to bridge this gap.   

 There is no known physical particle that is a pure qubit or qudit.  They are 

abstract manifestations of information containers for quanta.  They do however serve as a 

general effective model for containment of information.  This is where this discussion 

defers by offering an effective particle-field model for generalized information 

containers, what will be labeled as gu-bits (generalized uncertainty bits) and in the 

tradition of particle-like names, informatons.  The review of topoi and category theory 

serves as a means to broaden the general mathematical description of these entities.  

Indeed, the application of higher-order algebras or n-categories may be fundamental to 

understanding information spaces in LQG spinfoams that are self-aware semiotic 

structures and that serve as morphogenetic mechanisms for CASs and the info-holarchy.  

These motives, among others, are the goals of chapter 4 to follow.  This study on the 

notion of generalized information building complex systems that may effectively model 

patterns organization evolution is the ultimate result being pursued.  Evolutional patterns 

will replace traditional business analytics and approaches to displaying these patterns in 



 

 

226

holographic dashboard-caves can supplant classical statistical graphing techniques and 

their flat-screen variants.  
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Chapter 3: Research Method 

Introduction  

The research methodology utilized in this study was that of a hybrid grounded 

theory for developing abstractions and generalized models based on prior paradigms. No 

experimental numerical data was collected as the data, in this study, are models not 

numbers.  In this chapter a theory for information metamodels was constructed based on 

the abstraction, generalization, expansion, and modification of other more isolated, albeit 

grounded and successful physical, information, and organization theories and models.  

The theory was not constructed based on traditional statistical data analysis used in 

quantitative studies or in certain data-centric qualitative studies and their mixed hybrids.   

This hybrid approach is the predominant methodology utilized in abstract 

mathematics and physics research (Brown & Porter, 2004).  Abstract models are 

developed for the application of physical information theories to the social sciences: 

quantitative in the mathematical review, generalization, and expansion of existing 

information and physical theories, and qualitative in the specialization of these 

abstractions to certain techno-socioeconomic and physical components in nature and 

societies.  Rather than gather data from particular phenomena and apply general 

quantitative statistical tools, this study focused on reviewing well defined and established 

classical, contemporary, and postquantum theories of physical and logical systems, then 

generalizing them to construct a novel approach to information dynamics. Traditional 

quantitative studies were not used because of the scope of generalization of organizations 

– no static or sufficiently predictive dynamic model suffices to describe the evolution and 
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emergence of information in forming abstractions of organization, that is, patterns are 

better tools than models for prediction and description. 

Hybrid Grounded Theory: Research Design and Approach 

 Organization is the aftermath of creation.  Without material, organization is a 

hollow concept.  Without organization, material is devoid of meaning, but more 

importantly, it is devoid of informational structure, the basis for entropy.  Modeling and 

prediction are the stalwarts of finding the informational structure of organization and its 

material.  However, classical modeling and prediction of emergent phenomena are 

illusions of grandeur.  Patternization of emergent organization is a more apt tool for neo-

post-modern, computational, and simulation-based research.   

Twentieth century nonclassical paradigms were technically and philosophically 

built and extended from 18th century mechanical approaches (Kuhn, 1996). However, 

nonclassical thinking such as that emanating from the ideas of non-Euclidean geometries, 

thermodynamics, relativity, quantum mechanics, physical field theories, probability, 

evolution, and rudimentary machine computation, were seeded during the later century.  

Specifically, general relativity, quantum mechanics, and evolutionary studies bore these 

fruits. Simultaneous to and alongside these shifts in scientific thought, the more 

conventional studies of organization and management of humans and machines were 

developed, albeit maintaining the determinism inherit in conventional 18th century 

science.   

These scientific paradigms were postmodern hallmarks because they directly 

involved the observer as an active influence in shaping reality.  However, as these 
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frameworks more adequately described phenomena, they also exposed their weaknesses 

through the lens of complexity and information.  Nonlinearity was the enemy of such 

systems.  Almost all events in the universe are complex and nonlinear because 

nonorganic entities are eventually influenced by some adaptive, living organic entity and 

because they are involved in some emergent manifestation of other entities.  Organized 

phenomena required an understanding of multiple agent behavior.  In the spectrum of 

organization scale, from the microscopic interactions of subatomic particles to the ultra 

macroscopic forming of mega-clusters of supergalaxies and the possibility of multiverses, 

emergence arose has the newest magical property of matter.  To this end, this 

development necessitated experiments showing the realization that multiagent systems 

are superior metamodels of organization, Shohan and Leyton-Brown (2009), and that a 

unifying theory of physical information and spacetime can more adequately model the 

evolution of those organizations, Chaisson (2009) and Kaufmann (1995).  It is in this 

context of postmodern paradigms of information and matter that this study is motivated 

and supported. 

 The development of these postmodern ideas of organization precipitated the 

introduction of more revolutionary nonclassical thinking, the neo-modernization of QM, 

GR, and evolution.  This study proposed a metamodel based on the common property of 

information in all materials and of a calculus for organization of those materials.  This 

metamodel framework takes the form of an information particle, the informaton, an 

information field theory, and the introduction of an archetypal and prototypical 

structure—the info-holarchy—based on the constructed first principles of physical 
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information.  A reformulated organization theory can then be based on a form of the 

information physics introduced in this study, subsequently applied to tools for measuring 

business dynamics.  

The hybrid grounded theory approach utilized in this study is rooted in the 

traditions of abstract mathematical physics research.  In this paradigm, conventional 

theories are exposed as incomplete or inadequate in describing phenomena that have been 

scrutinized by instrumentation in experimental studies.  Einstein’s development of GR 

was as a result of explaining gravitation by a physical field theory, spacetime curvature 

conforming to special relativity, and faithfulness to his equivalence principle.  These 

supporting constraints emanated from a realist philosophy of nature.  Nonetheless, GR 

did not immediately supplant Newton’s inverse distance gravitational law which assumed 

a force acted upon mass from a distance without any physical explanation.  It was not 

until Dyson, Eddington, and Davidson (1920) observed light ray deflections during a 

solar eclipse, thus revealing the curvature of its path, as predicted by GR, did the 

scientific community accept GR.  Einstein did not himself provide direct experimental 

evidence prior to this.  He relied on the merits of his model: a more consistent and 

complete mathematical and physical description of gravity.   

As a less abstract example, Taylor (1911) developed the emphasis on task 

reductionism, task time optimization, and heirachical organizational structure in 

conveyor-like industries in the early 20th century, the beginning of the management and 

organization sciences.  Taylor’s stop-watch management was a linear and rational 

methodology, mapping the human worker to the architecture of a machine that fed on 
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monetary needs alone.  Because humans and their societies are at best, boundedly 

rational, cognitively dissonant, display properties of nonlinearity and chaos, and are 

motivated by a myriad of factors in the workplace, Taylor’s paradigm left much to be 

desired in describing dynamic organizations (Olsen & Eoyang, 2001).   

Adjacent to Taylor’s opus was the more rigourous work of Shewhart (1939), who 

developed the statistical process control theoretic aspects of management science.  While 

Taylor’s management paradigm was slowly replaced by more flexible and holistic 

organizational theories of dynamic structure and function, Shewhart’s process control 

ideas were expanded on by many, including most famously, Deming (1952).  Group and 

network dynamics replaced the dictum that individuals could be controlled and their work 

throughput optimized. Statistical process control homed in on more precise measurement 

of linear phenomena in business.  Again, this new paradigm of organizational diversity 

was not automatically embraced – no new and consistent evidence was immediately 

produced with their proposals.  However, these novel models of management eventually 

made their way into management studies and experiments.  Analytical results followed.  

Holistic theories started to surface through the view of organizations as systems.  

This was initiated by von Bertalanffy (1951) through his early thesis on adaptive 

feedback systems theory.   Nonetheless, linear and sequential views of management and 

organization prevailed because of a lack of real-world evidence and concrete examples 

that could be sampled and consequently analyzed.  Systems theory is about the whole of 

the organization, not individual parts.  However, even in this vein, systems theory was 
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still a linear idea.  The ability to simulate complex organization was not yet available and 

theoretical notions had to suffice to adequately generalize organization behavior.  

This same incompleteness in describing organization dynamics held true in the 

arena of performance metrization in business.  Balanced scorecards (BSC), key 

performance indicators (KPI), Six Sigma, Deming’s 14 points, and the behavorial 

spectrum of theories X, Y, and Z based on Maslow’s hierarchy of needs, are a few of the 

paradigms introduced into management science in the past decades in an ever-changing 

attempt to optimize organization performance (Deming: 1982; Fitz-Gibbon, 1990; 

Maslow, 1970; Schneiderman, 1987).  All these business concepts continued to espouse 

classical thinking and tool building that tended to linearize and simplify the complex 

dynamic of organizations.  In these paradigms, processes were elevated to be 

multidimensional within the organization, but are sequentialized for control purposes.   

Following and parallel to these developments, the models of bounded rationality, 

chaos, and emergence of diverse spectrums of behavior (self-organization) within an 

organization were piecewise introduced into the business sphere (DeShon & Svyantek, 

1993; Dooley & Johnson, 1995; Simon, 1957).  Subsequent to this, holistic business 

research studies were conducted.  However, even currently, these theories are considered 

as classical thinking as indicated by the aforementioned performance measuring 

paradigms.  Emergent phenomena need to be studied utilizing the emergent sciences 

rather than the optimization of a classical model of behavior, notwithstanding the intent 

to expand the understanding of those phenomena.  This study’s research methodology 

depends on the generalization power of its theoretical constructs and on new perspectives 
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of how to observe and describe patterns of behavior in organization evolution.  To 

measure the robustness of these generalizations, their reduction to specializations must be 

well grounded. This study’s major construct, the info-holarchy, will be proposed to 

represent specialized organizational structures, such as information-based businesses and 

their evolutional patterns and highly complex, adaptive inference-based organisms, such 

as neuronal structures in mammals and nonclassical computational devices. 

This study proposed the development of a novel information theory based on first 

principles of physical spacetime that encompasses the emergent sciences of complexity, 

causaloid-based loop quantum gravity, generalized uncertainty, nonclassical logics, and 

evolutional adaptation.  These paradigms are categorized as postmodern, but are founded 

on the neo-classical paradigms of quantum mechanics, general relativity, Darwinian 

evolution, and nonlinear studies. Additionally, the utilization of topos theory from the 

high-level representations of category theory that generalize the classical mathematical 

constructs of sets, points, and functions will be applied to this information-based notion: 

the idea of an abstract particle of information and an accompanying physical field theory 

based on general uncertainty principles that usurp classical probabilistic approaches.  

This framework will then be used as a calculus for the organization of entities, the info-

holarchy.   

The methodology that presents this metamodel is one of generalization and 

synthesis of many different paradigms of physical and mathematical realizations of 

matter and its ensuing organization.  The immediate applicability for this study based on 

a formal framework for information and organization is to techno-socioeconomic 
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organizations and inference machines of which the most ostensible examples are neural 

structures and intelligent nonclassical computational devices. 

The Role of the Researcher 

The role of the researcher in this discussion is that of reviewing the existing state-

of-the-art of theoretical information theories, generalizing them to construct a novel 

nonclassical approach to information physics as applied to the morphology and dynamics 

of organisms and organizations in nature and society.  Quantitative physical theories and 

their mathematical abstractions are used exclusively in this development.  Human studies 

are absent in order to better objectify a study that, in the end, explores the far edges of 

how observer subjectivity may dictate physical information.  However, the established 

models of information and physics reviewed in chapter 2 were generalized, synthesized, 

and expanded.  I have relied more heavily on the applications of the proven abstractions 

of contemporary physical and logical systems than on an isolated quantitative studies of 

one phenomenon or group thereof. 

Because no human or organizational studies involving quantitative sampling were 

done in this study, there was no need to gain access to potential participants or 

organizations. Nonetheless, I applied for and received Walden University IRB approval 

(Approval # 11-04-10-0319302).  Applying the info-holarchy metamodel to dynamic 

organization structures and artifacts in chapter 5 was achieved by the process of reducing 

a general law to specific parameterizations.  No researcher-participant working 

relationship was necessitated by this methodology of abstract construction and applied 

reduction.   Additionally and consequential to this task, no ethical protection of 
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participants or business organizations was necessary past the anonymity of any particular 

product, business name or private organization and its proprietary properties. Industries 

and objects were referred to in generality.  Inference machines, neural structures, and 

general information-laden business organization profiles were chosen as potential 

applications of this study’s metamodel based on the commonality of their 

communication, evolutional, and historical patterns and lifecycles (i.e., these organisms 

depict high-level patterns of evolution that involve similar cateogories of information 

dynamics). 

Ethical considerations in this discussion are limited to the application of its 

proposed abstract model for information to human-inspired and natural processes 

reviewed and expanded upon in chapter 4: (a) the organization of the brain-mind system 

and (b) a foundation for viewing dynamic information flow and patterns using 

holographic principles and the info-holarchy structure in a socio-economic organism, the 

business entity.  No human studies were performed that required the collection of private 

information or that apply methods of collecting infomation from individuals or of any 

application of psychological or physical controls or constraints.  The researcher maked a 

sincere attempt to construct a novel model for information dynamics, not as a means to an 

ultimate model, but as one small tool in further understanding a more powerful idiom for 

the newly energized study of information in all physical theories. The researcher did not 

require a researcher-participant working relationship nor required particular ethical 

protection mechanisms for research participants in the absence of such.  
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This chapter will introduce more questions than posited answers. These questions 

will take the general form of existence of evolutionary rules of organization through a 

new theory of information and organization physics.  If information is the calculus of 

organization and makes possible the creation of particles of the physically perceived 

universe, is it consistent in other universes of perception (i.e., usurps evolutionarily 

formed physical laws)?  Is information a first principle of existence?  Are there other 

more powerful generalizations to information and entropy?  More concretely, can socio-

economic organizations such as business entities be treated as specialized organized 

inference machines, more robust versions of computational devices with a collective 

generalized intuition?  Is it possible to sufficiently peer into and manipulate the dynamic 

evolutional workings of a business entity via a new kind of interactive holographic 

representation – a hyper performance dashboard?  Finally, is the information holarchy 

presented in this study, an appropriate and accurate metamodel for patternizing the neural 

substrate of biological brains, another specialized inference machine? 

Setting and Sample 

In this study, the data collected were not numerical or intuitive measurements, but 

were paradigmatic theories of (a) information, (b) uncertainty, (c) physical spacetime, (d) 

mathematical representation, (e) complexity, (f) networks, (g) games and decision, and 

(h) organization.  This study is an exercise in Kuhnian philosophy, specifically, a 

prerequisite for positively effecting normal science information and organization 

paradigms. This study was centered on a developing hypothesis involving the microlevels 

of information and the macrolevels of organization and their connecting bridges that exist 
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in our mesoscopic world.  This hybrid grounded theory methodology manifests the 

abstraction of a new metamodel from well founded classical and neo-classical paradigms 

of science outlined above.  No sampling of measured phenomena or experimental design 

was involved in these abstractions of the reviewed paradigms.  The design of this study is 

adequately described as the attempt to generalize and synthesize well founded theories of 

information, cosmological and particle physics, organization, complexity, and nonlinear 

studies.  Some of these theories are currently being investigated in well formed particle 

physics experimentation in particle accelerators such as the Large Hadron Collider and in 

computer simulation studies of multiagent systems that obey certain rule regimes.  

Data Collection and Analysis 

The data collected were in the form of appropriate information and physics 

paradigms, not sampled results of experimentation.  Chapter 4 generalizes and 

synthesizes these paradigmatic theories by constructing an information-based metamodel.  

The applications of this metamodel were presented as specialized models to inference and 

business organizations in chapter 4.  Patternization is utilized in the absence of numerical 

modeling and prediction. Emergence is better described by these patterns than by a 

limited number of experimental results – a type of phenomenology of individualization of 

these models.  If patterns predicted by the info-holarchy metamodel for these applications 

differ in a significant manner from their respective real-world manifestation (i.e., 

bifurcation may ensue where none were predicted), then the info-holarchy may not be 

appropriate or adequate at the scale of the organization being specialized.  For example, 

within a particular business, will an info-holarchy adequately describe how information 



 

 

238

flows and how it may create or morph new substructures on the scale of departments, 

facilities, groups, individuals, and global extensions?  If the workable scales are limited 

then the generalization of the metamodel is deficient.   If the metamodel predicts new 

organization substructures that have not yet emerged in the observed lifecycles of 

businesses, then its prediction can be queued based on time-epochs. 

The development of a new information model for organization in this discussion 

is, in a sense, an exploratory study.  It points to the possibilities of patternization as a 

replacement for classical modeling and prediction in the study of phenomena.  In this 

way, follow up studies are encouraged that attempt to apply the info-holarchy to describe 

real-world organizations and organisms in a dynamically scaled manner, that is, 

simultaneously in as many scale levels as is computationally possible.  It is posited here 

that such a view of the lifecycle of organizations is more in tune with emergent 

phenomena. 

Protection of Human Participants 

In this study, while no inclusion of human participants was done, to protect the 

possibility of mentioning any particular organization by name or by proprietary property, 

I did not generalize or stereotype societies, cultures, or industries for the pure motivation 

of simplifying a phenomenon to fit this study’s model for organizational dynamics.  This 

study was not an attempt to limit the potentiality of societies, their members, or pigeon-

hole their cultures into a box of models. Quite the opposite, this study posited that 

societies are hyperdynamic, whose behavior approaches that of emergent laws of form.  
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Societies are instantiations of organisms that follow evolutional physics and information 

dynamics.   

Dissemination of Findings  

The info-holarchy and the presentation of its application to specialized models of 

organization were given as a preliminary poster paper at the Walden University Winter 

Residency in Dallas, Texas, in 2008.  It is the my intention to follow this study with a 

series of discussions in the form of research articles in journal print and other Walden 

residency poster papers with respect to further applications and a new computational 

methodology based on the info-holarchy metamodel as discussed in chapter 5. 

Summary  

In this chapter, a review of this study’s (a) research methodology, (b) researcher 

role, (c) ethical considerations, (d) methodology of data collection, sampling, and 

analysis, (e) considerations for the protection of potential human and organization 

participants, and (f) dissemination of findings were presented.  This study was manifested 

through the use of a hybrid grounded theory of mathematical and abstract physics 

research – the generalization and synthesis of established and proposed contemporary 

theories and models into a unifying metamodel.  No data was collected.  Instead, models 

from contemporary theories of physics, information theory, complexity science, 

organization theory, network theory, and game theory were utilized  to generalize and 

subsequently construct a novel information-theoretic metamodel for organization.  No 

human participants were used.  Use of specific names of organizations was avoided.  
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Chapter 4: Results 

Informatons and the Info-holarchy   

Organisms and complex organizations are examples of collective emergent 

information flows.  While the term, information, is used in a ubiquitous manner to mean a 

general relevancy of data and knowledge propagation and retrieval, the apparatus for its 

structure and flow between event and observer is ambigious.  Most classical definitions 

of information do not entail the existence of an observer or self-aware system.  

Thermodynamics, QM, and GR were to challenge that proposition, along with the notion 

of semiosis.  Nonetheless, the duality of a source-receiver based information theory as a 

doormat to a generalized information theory for physical existence (PE) remains 

controversial and further ambiguates that thesis.  Regardless, uncertainty is common in 

any facet of information measurement.   

There is no larger indication of this than in the uncertainty principle in QM.  The 

measurement problem in QM is manifested from the famous Heisenberg’s uncertainty 

principle: 

 
2

x p∆ ∆ ≥
ℏ

 (5.1) 

where ∆x and ∆p are the respective RMS of the simultaneous measurement of position 

and momentum of a quanta and ħ is Planck’s constant (Heisenberg, 1927).  Once position 

is measured with adequate precision, momentum or any function of it thereof loses that 

precision in its measurement (i.e., one measurement disturbs the other, an observer 

effect).  The truly important result of this phenomena is that quanta have no definite 
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simultaneous position and momenta, independent of measuring devices in standard 

nonlogical positivist QM.  Things are not as clear in the interpretation of QM using 

entanglement where measurements on a quanta that are entangled with another effect or 

limit that of the other. 

Information in the form of these measurements also loses objectivity.  It remains 

to show if the collapse of the generalized Schrödinger wave equation dictates such 

measurement or is done separately by nature through the property of entanglement 

(Thaheld, 2007; Zeilinger, 2010, 285-288).  Everett’s many-worlds interpretation says 

otherwise.  In this model, parallel universes exist simultaneously.  Each universe takes a 

uniquely different reality history.  No collapse of the wave equation ensues because every 

“known” particle and corresponding particle history is in one such universe and hence, all 

conceivable histories exist simultaneously (Everett, 1957; Tegmark, 2003).  From an 

information-theoretic viewpoint, all potential information exists.  If each possible particle 

state exists in this parallel scenario, then each possible information state exists.  

Information has been theorized to propagate from the properties and observables of 

physical systems alone.  In other words, no information exists without a physical 

phenomenon.   

This discussion departs from that philosophical premise and instead adopts the “it 

from bit” directive of Wheeler and followers.  Here I have generalized this directive to an 

“it from g-bit” philosophy, where a g-bit is this study’s hypothetical information 

container, the informaton particle, that is based on notions of generalized uncertainty 

(GTU), LQG-spinfoams, semiosis, an ensuing concept of a generalized information 
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(informaton) field theory, and finally, a generalized information holarchy structure—the 

info-holarchy.  An earlier attempt at formulating an information field theory based on 

classical field techniques and reviewed in chapter 2 assumed this reductionist approach 

(Enßlin, Frommert, & Kitaura, 2008).  Quantum mechanics adds to this condition by 

implying that no information may exist if both an observer and a physical event or 

presence does not exist.  In this study information was introduced as an epi-phenomenon.  

Information in the form of abstract particles that each consist of an observer and event-

generator entity pair was constructed.  It was hypothesized that mathematically abstract 

subquark particles such as the helon and preon models can be represented by these 

information particle systems.  These bi-partite systems will be called informatons.   

In the tradition of physical field-theoretic methods, a new generalized information 

field theory will be attempted utilizing the structure of the informaton and its holonic 

nature in building macroscopic clusters.  These clusters will then be used to construct a 

class of complex organization – the complex adaptive multiagent system (CAMS).  More 

specifically, the class of HMASs will be utilized as the target construct of informaton-

based self-organization and assembly.  The abstract mathematical structure of such 

informaton systems will be investigated utilizing the information-theoretic properties of 

LQG spinfoam network models and their higher order mathematical structures and 

descriptions via n-categories. 

The duality in quantum mechanics—the phenomena of observing and analyzing 

either a particle or wave interaction—and the property of complementarity—the inability 

to simultaneously measure both position and momentum of a particle—are cornerstone 
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implications of the Heisenberg uncertainty principle.  This principle also implies that the 

subjectivity of an observer (i.e., the application of a measurement operator [POVM] on a 

quantum state), potentially interpreting multiple versions of physical presence, is at the 

center of how information is perceived.  Following quantum mechanics, a model of 

information particles is presented in which an event entity (event-generator source) and 

an observer entity (receiver) are entangled (super-correlated) and paired to form a novel 

unit of information—the informaton.  

Reductionism exists in the physical sciences because the detailed study of the 

connected constituent parts of a whole leads to a better understanding of the mechanisms 

of composite organisms and organizations, not withstanding the role of holism and 

emergence.  Nonetheless, in order to grasp and extend a physical theory of presence, both 

reductionism and holism must be applied in a coordinated, equitable, and consistent 

manner within the dictums of scientific research.  This approach to modeling reality is a 

prototypical methodology in legitimate post-normal science (Funtowicz & Ravetz, 1993).  

Particle physics is a unique example of a transformation to such a paradigm.  For 

example, in a quest towards further reductionism in the representation of physical 

particles in the universe, the helon (rishon) and preon models in physics abstract the 

composition of the smallest experimentally verified actions for quarks, into ever smaller 

compositions.   

Helons are abstract particles that consist of ribbon twists representing fractional 

charge (Bilson-Thompson, 2005).  When these ribbons are combined using a physically 

constrained rule set, they mathematically form quarks and account for the subsequent 
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charge and spin structures (presently in fermions only).  However, there remains great 

debate about the existence of any particle as a point-mass in any theory of quantum 

gravity (Halvorson & Clifton, 2001; Nikolic, 2009).  Bohr, Mottleson, and Ulfbeck 

(2004) interpret quanta (general particles) in quantum mechanics as phantasms—

distribution holders or fields for the description of particle dynamics.  Indeed, the most 

successful rendition of quantum mechanics has been as a field theory, the quantum field 

theory (QFT).  QFT is a most holistic approach to quantum mechanics because it assumes 

that a field is the central tenet of any plausible way of identification.   

With respect to the abstraction of information, this same push and pull of 

paradigms and frameworks persist.  However, no mechanism for localization or field 

exists explicitly for information.  This may be because of the ambiguous and flippant way 

in which information is sometimes used and defined for convenience.  Mathematical 

abstractions of information posit that only the physical presence of matter and/or energy 

exudes information in the universe.  This information is made plausible only by a suitable 

measurement apparatus.  However, the proposition that an abstraction of information is 

the source of presence in particles has not been taken seriously except by the proponents 

of digital physics.  One reason for this seems to be the lack of a universal model for 

information both as a mathematical abstraction and a physical source.  In the spirit of this 

micro structuring, this paper proposed a general robust information particle, the 

informaton.  Informatons may act as constituent parts in building physical particles, 

eventually leading to higher order constructs, organisms, and general organizations.  

Furthermore, the glue that fits and molds these organizations will be supplied by a 
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generalization to the principles of uncertainty, one specialization of which is the quantum 

information model.  

Each informaton will consist of an event-observer pair of entities.  These entities 

are information abstractions existing only in pairs.  In this sense, an informaton is a type 

of supersymmetric particle.  The event entity of an informaton can be the event entity of 

another informaton consisting of a different observer entity.  Similarly, an observer entity 

of an informaton can be the observer entity of another informaton consisting of a 

different event entity.  Informatons are thus a type of permanent entanglement of event 

generator (source) and observer (receiver) entities.  

 

Figure 14. Informaton particle model 
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Event entities are propagators of information flow while observer entities are 

recipients, observers, and measurements of information flow.  The mechanism for 

receiving information flow in an observer consists of the composition of a finite (or 

infinite, given that the processing or computation time is finite) number of signal 

filtration operators on the stream, 

 
1 2

... ...
ni i i

s s s s= � � �  (5.2) 

The mechanism for event generation of information is given by the propagation of a set 

of observables, Iii
o ∈}{ , of a physical particle, such as subquarks.  Inter-informaton fields 

are abstractions of the stochastic ensemble theory of field theory constructed for 

information transfer between and within informatons.  Fields are essentially a stochastic 

way out of dealing with the combinatorially explosive computations involved in 

considering individual interactions of particles. 

Consider the differences between a particle from the standard model (SM) of 

quantum physics and an informaton.  Informatons are bipartite subsystems but cannot 

exist in isolation of their constituent parts.  Standard particles are reductionist entities that 

exhibit certain behavior, have properties, and possess observables.  When measured they 

propagate as information to separated self-aware systems (SASs)  (i.e., observers).  In the 

quantum model, observables are manifested by the application of POVM operators acting 

on the state-ket of the entity.  Informatons generalize this action by combining the 

phenomena of propagation of observables (information) and the detection of such 

measurement by an intertwined SAS observer into one system.  Hellman, Mondragon, 

Perez, and Rovelli (2008) have shown how when observer and observed quanta are 
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combined into one general relativistic-quantum system, probability amplitudes can be 

calculated without the explicit use of time.  In the case of an informaton, the event and 

observer are combined into one system.  Their joint probability amplitudes can now be 

calculated in a fashion not involving time and as such constitute a candidate for a 

physical entity.  Quantum entanglement and its generalizations formed from GTU here 

act as the communication QG-channel between event and observer components of an 

informaton.  In a QG channel, the constraints of both GR and QM dictate the fidelity.  

With this in mind, the capacity of a QG channel via a GR-QM Unruh-DeWitt channel, a 

generalized information channel that supports both relativisitic and quantum effects, will 

be discussed later in this section.  Moreover, informatons in this framework are 

constructed to build observables.  It is posited that because of this, matter-energy 

particles can be “informationally” constructed from informatons.  They are the 

information conduits of reality.  

Informatons communicate by the exchange of generalized bits of information.  

The “it from bit” paradigm of Wheeler (1990) is elevated, in this discussion to “it from g-

bit“, where a g-bit generalizes a quantum computational unit to any information unit 

based on very general notions of intuition, uncertainty, and superquantum phenomena, 

the s-bits.  SM particles follow quantum mechanical rules.  Informatons follow general 

uncertainty theoretic (GTU) rules.  I will investigate what this means in terms of 

information containers (i.e., the construction of g-bit dynamics).  In quantum mechanics, 

a general pure qubit state can be expressed as a superposition of two distinct bit states: 

 
2 2

0 0 1 1 0 1,  where 1ψ α ψ α ψ α α= + + =  (5.3) 
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For a multistate qubit, or qudit, with d possible states, this superposition can be expressed 

as: 

 
2

1 1

,  where 1
d d

i i i

i i

ψ α ψ α
= =

= =∑ ∑  (5.4) 

One may consider the quantity, 
2

i
α  (squared amplitude), as being the classical 

probability of finding the qudit in the state,
i

ψ .  Consider, next, an informaton-type 

qudit.  The ability of an informaton to communicate a bit of information from event to 

observer is dictated by the event propagating one bit and the observer being able to 

cognitively recognize and receive that bit.  The states of the informaton are therefore bi-

states consisting of the coordinated event and observer states of propagating a bit and 

receiving that bit respectively.  Propagating a bit is equivalent, in this discussion, to 

possessing a discrete observable at its constituent root, i.e., spin, components of 

momenta, mass, etc.  If both entities in an informaton follow quantum mechanical and 

general relativisitic rules, then each will possess observables that are governed by the 

nonlocality and causality of an integrated physical theory, such as LQG spinfoam 

networks, a canonical quantization of General Relativity on a 3+1 dimensional 

decomposition of space-time.   

Spinfoams represent path histories of systems that translate from one spacetime 

state to another using this canonical quantization (quantizing or discretizing a classical 

theory).  The surface of foam networks represents qubit or ½-spin observable systems 

(Terno, 2006).  For an informaton-modeled system, the event generator will propagate a 

bit of information within its lightcone and quantum causal loop.  The receiving observer 
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entity will receive that bit of information according to those same rules of engagement.  

The state of the receiver w.r.t. the bit propagated by the event-generator is then given by 

a rule whose parameters include the event-generator’s observables.  In quantum 

information terms, this rule is equivalent to the probability of being in a state that has 

received a bit of information from a particular event-generator.  The number of eligible 

event-generated bits is constrained to the lightcone and quantum causal loop of the 

observer.  Denote this space by, 
o

E for the observer ο .  Simply put, ifε  is an event-

generator and
o

Eε ∈ , then the potential informaton denoted by the pair ( )ο ε, has a 

nonzero quantum probability.  However, what does it mean for a bit of information to be 

generated and then received by a particular pair ( )ι ο ε= , in a relativistic-quantum 

manner?  

This collaboration between source and receiver can be defined as a quantum 

channel, under QM rules.  However, under the further geometric restrictions of GR, this 

quantum channel canot be simply described, as it is under a nonrelativistic quantum 

channel, that is, as a completely positive operator (Peres & Terno, 2003).  The vacuum 

between event and observer acts as a noisy quantum-relativistic channel at best.  Hence, 

an informaton contains an inherent quantum-relativistic noisy channel.  Channel capacity 

can be calculated based on the premise that the inter-informaton channel behaves as 

Unruh-DeWitt detectors, that is, as point-like 2-state quanta (qubit) interacting under a 

scalar quantum field (Cliche & Kempf, 2009).  By those results, no further noise is 

introduced by relativistic effects.  Channel noise is manifested through quantum 

perturbations.  These results generalize to qudit and GTU-inspired entangled systems. 



 

 

250

LQG spinfoam networks describe qubit/qudit dynamics and evolution under the 

assumptions of path history mechanisms and their ensuing hypersurface geometries.  

Spinfoam networks (SFNs) act as quantum-relativistic computers using their 

computational representation of ½-spin systems.  To view this, consider a patch area in a 

SFN.  This patch is abstracted as a quantized pixel, that is, a pixel that represents a ½-

spin particle observable or qubit,qi, when a puncture, pi is made by an open SFN’s edge 

in a superimposed quantum state of the form: 1 1 1

2 2 2iq
ψ

 
 = ± 
 

.  A set of N such punctures, 

{ }1,..., N
p p is associated with a stream of N qubits, { }1,..., N

q q and their N surface pixels 

respectively on the SFN (Zizzi, 2000).  Furthermore, by replacing the algebra of 

polynomials, 2�  acting on the surface of the 2-sphere, S2, whose surface represents the 

states of a qubit, with the noncommutative algebra of complex n x n matrices, n� acting 

on S2, via the mapping, , 1,2,3
i i

x kJ i= = where[ ]
2

, ,  
1

k

i k ijk

r
J J i J k

n
ε= =

−
, r the radius 

of S2 and 2 1n j= + the number of pixels (discrete cells), the fuzzy sphere for computation 

on a discrete LQG space is constructed.  The elements,{ }iJ form the n-dimensional 

irreducible representation of the algebra of (2)SU  (Zizzi, 2005a).  Additionally, by 

utilizing noncommutative C* algebras of complex positive linear functional (operators) 

for representing quantum states, the algebra of logic quantum gates is constructed.   

Computation of qubit pixels on fuzzy spheres is the basis for an approach to QG 

using quantum computation on SFNs (Zizzi, 2005a).  By considering bi-partite qubit or 

qudit systems on SFNs using the qubit pixilation and computation on fuzzy spheres, one 
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can accommodate for informaton-inspired computers and memory registers in LQG.  

Specifically, consider how an n-register from a sequence of n qubits represented in a 

surface S computes a binary function, { } { }: 0,1 0,1
n m

f → where m n≤ .  The unitary 

operator, 
2

( )mf
U x y x y f x= ⊕ where

2m⊕ is addition mod 2 is constructed.  Here 

x is a register of size n to store the arguments of f(x) and y  a register of size m to store 

the values of f(x).  Then the computation can be implemented by 

: 0 , ( )
f y

x x

U x x f x→∑ ∑ where 0
y
is the initial zero-state of the argument store 

register y and , ( )x f x is the 2-qubit state of the argument and function value (Zizzi, 

2005b).   

This approach also accommodates the natural realization of the Holographic 

Principle in which the information content (entropy) of a spacetime (D+1)-dimensional 

volume is bounded above by a proportion of the area of its D-dimensional boundary 

Bousso (2002), i.e.,
4

V

A
S ≤ .  LQG (spherically symmetrical version) naturally 

accommodates the holographic principle and so satisfies a crucial component for a 

unifying theory in physics and information (Gambini & Pullin, 2008).  The relevance of 

this is that as a surface patch of the SFN is punctured, only its surface area needs to be 

measured in order to calculate an approximation to its information entropy.  The pixel 

surface areas in SFNs are then taken to be on the Planck scale.  The larger implication of 

this is that for a black hole, B, the number of Boolean degrees of freedom, Rn, in a region 

R, completely surrounding B, is given by: 
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4

ln 2 ln 2 4 ln 2
S m A

n

B B B
R

π
= = =  (5.5) 

where Bs, Bm, and BA are the surface, mass, and horizon area of the black hole 

respectively.  This gives an upper bound on the number of qubit pixels representable in B 

and so, puts a limit on the discreteness of B and on any volume in the universe under 

severe conditions of blackhole evaporation.  This is clearly a measure of the discreteness 

of spacetime without sacrificing the accuracy of calculating observables of reality 

modulo the Planckian scales.  For this discussion label this environment the Planckian 

LQG computer (PLC).  Zizzi refers to this as the quantum computer view (QCV) of 

discrete quantum gravity on the Planck scale (Zizzi, 2005b).  In a PLC, the 3+1 

dimensions of spacetime gravity break down (‘t Hooft, 2009).  This is both the physical 

and philosophical weakness and strength of the PLC approach to QG and hence, to 

generalized computation and information.  This dimensionality reduction implies the 

plausibility of an infinite correlative model for PLCs at the Planck scale, while exhibiting 

the emergence and irrelevance of its inside dynamics, information-theoretically.  

Informatons fundamentally existing at the Planck scale, utilizing generalized uncertainty 

principles, while honoring the constraints of QG, will be a candidate for the atoms of 

information and the constituent parts of physical information fields. 

 Informatons can be statically positioned as quantum (GTU) cellular topological 

lattice automata in spacetime.  What this means is that informatons occupy every discrete 

and malleable point position in spacetime regions (eventually expanding to the universe), 

connected by their unique automaton rules and a topological lattice structure.  

Topological lattices are lattices, L in which the operations of join, ∨ , (the supremum), 
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and meet, ∧ ,(the infinum), are continuous maps from L L L× →  (Strauss, 1968).  In 

Planck-scale LQG points on the lattice L are Planck-volumes.  Topological lattices are 

then ways of approximating ever smaller volumes (limit points) in the eventual 

discreteness of lattices that can also have exotic topological structures, e.g., topological 

fields and other invariant spacetime curvatures.  Informaton lattices can then curl into 

themselves in various ways, as is depicted by m-branes and spinfoams.  An informaton 

substructure can then be constructed by its information patterns to form a topology in a 

sublattice leading to the generation of exotic entities such as those m-branes and 

spinfoams.   

Information exchange patterns are made possible by the lattice connections 

(lattice fields) of informatons which are Planck-scale communication channels.  One then 

may apply quantum (GTU) channel limitations and rules reviewed earlier to these lattice 

connections.  Information fields (to be clarified and justified later) can also be generated 

through these Planck-scale channels producing abstract information channels.  

Additionally, fermionic, bosonic, supersymmetric, and quantum dot structures for 

quantum cellular automata can be built to generate scaffolds for energy-matter 

(McGuigan, 2003).  In a similar manner, lattice cellular automata can generate GTU 

logics and hence information flow from GTU-based processes.  Lattices automata are 

generalizations of lattice structures with automaton-like processing nodes and edges in 

which general logics can be built from their structural dynamics (Kupferman & Lustig, 

2007).  In our prior discussion on quantum logics, lattices were a generic generator of 

uncertainty and nonAristotelian logic systems.  Unique information automaton rules (e.g., 



 

 

254

quantum and GTU-based strategies) and lattice structures based on GTU processes and 

the general relativistic-quantum spinfoams introduced for informatons define the 

generation of energy-matter particles.  LQG spinfoams are in their continuous nature, 

limts of lattice structures and as such topological lattices coupled with GTU logics can 

enrich the spinfoam formalism.  Informatons can then be considered generalized 

spinfoams (Ding, Han, & Rovelli, 2010). 

Physical energy-matter fields are dictated by the information rules of these 

lattices.  Informatons remain in their static positions while the generated energy-matter is 

manifested through motion, i.e., particles are generated and propagate through the 

scaffolding of static informatons.  All forces and motion of energy-matter are generated 

by the exchange of generalized information bits—g-bits, within the informaton lattice.  

Put more strongly, informaton lattices manifest forces and energy-matter. Information 

exchange patterns of informaton lattices (soon to be idealized as info-holarchy 

organizations) form force, energy-matter, and their ensuing fields.  This is the main 

premise of informaton-based reality.  Informaton lattices are abstract mathematical 

metamodels in the sense that all energy-matter and force are manifested by certain 

patterns of information exchange between and shared with other informatons.   

There are chains of unknown energy-matter and force constituents that would 

exist between informatons and the current taxonomy of SM and hypothesized particles 

from QG theories.  For example, preon theory is the abstraction of subparticles named 

preons that construct quarks, leptons, and gauge bosons (D’Souza & Kalman, 1992).  

Further refinement of preon theory was the triplet Rishon model of Harari (1979) and 
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Shupe (1979) and refinements from the Helon model of Bilson-Thompson (2008) in 

which constituent SM particles are decomposed into triplet combinations of new abstract 

particles called rishons and helons respectively.  These were attempts at more efficiently 

and accurately categorizing SM particles while predicting unknown particles that could 

emanate from a creditable theory of quantum-gravity. 

In order for informatons to patternize higher order particles (and their constructed 

waves and fields), they must take into account all the properties of SM particles, 

including charge, chirality, strangeness, spin, and well as any property of predicted 

particles, such as gravitons and the Higgs boson.  At the least they must construct such 

abstractions in principle by distinguishable and unique patterns of information exchange, 

i.e., patterns of flow and organization.  The entropic gravity concept from Verlinde 

(2010) hypothesizes that gravity is a second-hand force emanating from information 

exchange amoung particles in a small volume, i.e., gravity is the effect of a higher 

probability of particles of mass being closer to each other as a result of the combinatorics 

of particles occupying nodes of spacetime polyhedron.   

Cellular automata have been documented to have patterns emerge forming 

distinguishable categories (Wolfram, 2002).  However, the topological lattice structure 

and GTU processes of informatons add new threads of complexity to these cellular 

automata dynamics.  Starting with the premise that informatons reside in Planck-scale 

spacetime and information is digitized from gu-bits, no further reductionism is necessary.  

This is reminiscent of Leibnitz’s indivisible monads without the theological and spiritual 
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implications that were thrust upon natural philosophers of post-Renaissance epochs 

(Leibniz, 1992). 

A novel abstract approach to developing possible QG theories using a form of 

causal probability, the causaloid, will be modified as a general conduit for launching the 

informaton model.  The causaloid is an attempt at constructing a framework that 

embodies a probabilistic theory adaptable to an indefinite causal structure (Hardy, 2008).  

Quantum Theory is a probabilistic approach to state computation in physical systems.  It 

requires a causal structure in spacetime because the evolution operator acting on quantum 

states is a linear time evolution.  General Relativity, on the other hand, does not require a 

definite causal structure because of the natural of its global spacetime curvature and 

metric.  However, it is a conservative theory because it is deterministic.   

The approach to QG from a causaloid framework is to not assume or start from 

the premises of one theory and adapt to the other.  What is therefore, an indefinite causal 

structure? Causaloids endeavor to form probability statements about observations in an 

indirect correlative manner.  This means that if two regions of spacetime, R1 and R2, are 

considered in an experiment, in which a correlation is to be established between the two, 

one region will be probabilistically tied to a third, R3 or series of other regions,{ }iR that 

are only indirectly tied to the other.  In this way a theory can be constructed using 

causaloids for spacetime structures that depict an indefinite causal framework with a 

probability calculus, exactly what a QG structure would have to consist of.  For details on 

the causaloid construction and its implications for computation in a QG structure see 

Appendix B.  
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Consider a causaloid structure for bi-partite informatons utilizing the LQG 

spinfoam formalism at Planck scales.  An informaton contains two g-bit entities, each 

with multiple possible states, i.e., qudits with general uncertainty.  In the causaloid 

formalism, the pseudo-lattice structure of a quantum (classical) computer will serve as 

the background structure for informatons.  In this setup, each node will represent 

generalized computational gates.  Each node is linked by a scaffolding devise, the spatio-

temporal manifold.   

Two generalized qudits that will make up an informaton interact along spacetime 

curves that parallel the node structure of the pseudo-lattice computer.  Refer to Figure 21 

for a view of a QG computer pseudo-lattice of gates, node holders, interacting qubit flow 

and the causaloid framework.  In a modification, generalized qudits replace (qu)bits, and 

the probabilistic statements of the likelihoods in the causaloid are replaced by GTU-based 

propositions that generalize fuzzy quantum gravity.  Some aspects of GR computation 

and information will be injected into the structure of the informaton causaloid.  Let 

G
Λ depict the causaloid for this informaton-based QG and GTU structure. 

G
Λ  may then 

be utilized to calculate uncertainty propositions (statements) about the observables of 

GTU particles and hence of informatons.  

Next, entanglement will be utilized to further define the dynamics of informatons, 

along with a generalization using the GTU paradigm of Zadeh.  Entanglement is a 

stronger-than-correlative manner in which quanta can interact in a quantum mechanical 

sense, as reviewed earlier.  Maximally entangled quanta entertain further surprising 

behaviors, including violations of Bell-type inequalities and supra-causal effects.   
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Consider the postulation that maximum entanglement ofε andο entails the 

existence of an informaton ( )ι ο ε= , quantum mechanically.  Partial entanglement gives a 

relative existence of ι w.r.t.a measure of entanglement, a version of partial entanglement 

membership or fuzziness.  For bi-partite systems, any measure of entanglement entropy is 

equivalent.  Hence, any entanglement entropy measure may be used without loss of 

generality (WLG).  For informatons, mutual entropy would give a measure of 

receptability between e and o and hence of the information binding strength of ( )ι ο ε= , .  

In particular, for qubit informatons, one may utilize the Bell-states of ε andο .  

Let ι ε ο= ⊗� � � denote the subsequent four-dimensional Hilbert space of possible states 

for the informaton, ( )ι ο ε= , .  If ε andο are maximally entangled then the four base states 

of ι� are: 

 

1
| | | | |

2

1
| | | | |

2

a b b a

a a b b

ψ

ϕ ±

± = ±

± =

 (5.6) 

where a is the nonpropagating (resp. nonreceptive) state and b is the propagating (resp. 

receptive ) state of ε  (resp. ο ).  The informaton states | ϕ ± can be interpreted as the only 

classical communcation states and the states |ψ ± the quantum informatons.  The 

existence of such a decomposition is guaranteed by the Schmidt decomposition of 

elements in a Hilbert space from a basis.  More generally, if there are n and m modes of 

gate operations (states) for the observer and event entities respectively 

then n m

ι = ⊗� � � would be an nm-dimensional Hilbert space representing the possible 
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states with nm entangled base states, the entangled qudit base states.  When the 

coefficients of the decomposition are 
1

d
, where d is the dimension of the joint Hilbert 

space, then the state is said to be maximally entangled, Further generalization leads to an 

uncertainty model being imposed on the gate states.  In particular, for this discussion, a 

general quantum stochastic Itȏ process can be modeled on the gate operation of each 

entity of an informaton.  Note that quarks such as fermions and bosons impose certain 

constraints on these states through experimental observation.  Abstract informatons are 

constrained by the information gate states of their abstract event-generator and observer 

entities respectively. 

One may now consider a generalization of a prototypical quantum-relativisitic 

informaton.  Let the rules of information engagement between ε andο be governed by the 

dynamics of a Zadeh generalized constraint, ( , , )g X r R= .  The quantum probabilistic 

rules of superposition in the first example of an informaton are a special case.  Let X be 

the state variable, ιψ of the informaton ( )ι ο ε= , , r the probability operator, and R, the 

quantum superposition 2-state space relationship for two entitiesε andο .  Then 

( , , )g X r R= dictates quantum states for informatons.  In particular, the Bell states for 

qubits are generated using the amplitudes, 
1

2
± , being fully entangled.  More general 

models can be generated by other generalized constraints.  For example, by considering 

fuzzy or granular operators for r, fuzzy quantum logics can be induced for the states of 

informatons and other systems of particles.  Using a precisiated language (PL) for the 
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space of GCs, generalized constraints, 0 0 0 0( , , )g X r R= and 1 1 1 1( , , )g X r R= may be 

combined to form a novel GC, 3 3 3 3( , , )g X r R= using the logical operations-connectives 

(Zadeh, 2005): 

1.  (conjunction), ∧  

2.  (disjunction), ∨  

3.  (implication), ⇒  

4.  (bi-condition), ⇔  

5.  (negation), ¬  

6. qualification,  

7. projection, 

8. constraint propagation through composition 

Other operations are possible that preserve closure within the logical structure 

(GC,PL).  Conceptually, this implies that two fundamentally different logical systems for 

physical presence can be logically combined.  In particular, two informaton conceptual 

spaces, where the rules of engagement for events and observers are different, may be 

logically combined to form a third different logical system for informatons.  Utilizing 

Zadeh’s generalized uncertainty theory (GTU) in the formation of informaton-based 

structures, discrete information units are formed and are labeled as g-bits.  A g-bit is an 

abstract discrete unit of information that propagates within an informaton-based structure 

generated using the rules of GTU.  Since informatons are e-bits by definition, g-bits 

generalize e-bits.  In this scenario, disparate informaton subsystems can coalesce into 
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novel ones.  This sets the stage for the potential to form macrostructures from different 

microsystems of informatons.  In the causaloid formalism, statements of the form (8.1) 

are modified to fit the GTU constraint formalism for intuitionalistic calculus, that is, 

 
1 1 1 2 2

( , , ) ( | , , )
R R R R R

g X p p X F X Fρ =  (5.7) 

where ρ is the density operator for the likelihood and p is the mneumonic for the 

probability calculus.  The probability calculus can be replaced by any intuitionistic one, 

such as a granular measure that fuzzifies the value of 
1R

X given fuzzy or crisp renditions 

of 
1 2 2
, ,  and 

R R R
F X F . 

Informatons potentially cluster to form super-informatons, i.e., organisms of 

informatons interconnected via shared event and observer entities (entanglement) or 

through the coalescence of GCs via a PL in the GTU paradigm.  This sharing process 

may not be complete in a finite volume, V, in the universe, that is, each formed 

informaton may not share its entities with all other entities of the complete set of 

informatons in V because entanglement is not guaranteed for all entities within V.  

Nonetheless, the singularity of the initial conditions of the Big Bang model point to the 

high probability of this occurrence.  As in quantum entanglement, the spacetime between 

entities of an informaton span their respective lightcones and quantum causal loops.  An 

informaton is therefore an abstraction for a generalized relativistic-quantum particle.  Not 

withstanding the wave (field) properties of entities, this presents a higher level 

abstraction for discrete computation as well.  The aforementioned QG computers in 

Appendix B are generalizable to the GTU inspired physics of the informaton.  



 

 

262

Informatons become g-bits using the causal structure of GCs from Zadeh in place of 

quantum probability.  Since granularity defines the fuzziness in GTU, GTU logic equates 

(is isomorphic) to quantum logic in a general setting by using Lukasiewicz operators, as 

mentioned in chapter 2 and from the results of Pykacz (2007) and others. 

Generalized Information Field Theory  

In an attempt to quantize and form a generalized field theory of information centered 

on the informaton model, one is first confronted with the problem of identifying a general 

signal apparatus.  In the tradition of an information signal theory and as in the 

development of Enßlin, et al., a general signal response model, R, can be devised such 

that the data, d, propagated from an event is subjected to a filter operator, s, representing 

the measurement of the interested observable, with noise operator s
n .  This model may 

be expressed as: 

 ( ( ), )
s

d D R s n=  (5.8) 

where D is a functional on the product space of response and noise operators.  D is 

normally simplified to be linear and separable into response and noise components as in 

the model of Enßlin et al.  In this more general setup, D is constructed using Zadeh’s 

GTU.  Here quantum, chaotic, fuzzy, belief systems, and multilogic uncertainty versions 

of operators may be utilized in the model.  In addition, 0, ≠sns , i.e., the noise and 

signal operators may be correlated or even quantum entangled.  The signal is to be 

maximized, while minimizing the noise, w.r.t. the receiver.  In order to extract the best 

possible signal from d, a suitable transformation T is approximated as sdT ≅)( .  In the 
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form of a general D, there may be many such operators T.  In fact, a space of T operators 

may exist such that ( , )( )
d s

T d s ε− ≤ for every ( , ) 0
d s

ε > .  It should be noted that the signal 

captured will be affected by nonlocal entanglement and relativistic influences in our LQG 

framework.  This is the main departure from the epistemology of Enßlin et al.  The 

Lagrangian-Hamiltonian formalism developed in Enßlin et al. was from a consideration 

of quantum fluctuations and field theory dynamics.  In the quantum gravity case, the 

LQG spinfoam formalism will serve us better.  We define the information field via the 

signal generation, s, as in Enßlin et al.  The form of the signal operator will depend on the 

response, noise, and signal model operators, denoted here by the triplet ( ), ,R n D .  We 

write this dependence as ( ), ,R n D
s .   

These observables are then assigned on∂Γ , the boundary of a quantum spacetime 

spinfoam, ( , )i e o e o
Γ = Γ Γ∪ representing the tensor product state of an informaton with 

event entity e and observer entity o.  We define s

ed
g as the holonomy of ( ), ,R n D

s along the 

edge, ed of the dual to the tetrahedron, 4∆ , *∆  (two-skeleton) of the informaton 

spinfoam ( , )i e o
Γ .  Next, we define a field, 

s
φ on the 4-copy space 4

s
G , where Gs is the 

holonomy group of the above defined holonomies on ( , )i e o
Γ .  We pick 

s
φ so that it is 

symmetric and group-invariant in G.   In the spinfoam development for 4-D spacetime 

LQG the Hamiltonian action reduced to the form: 

 2 51
( ) ( [ ]) ( [ ])

2 5!
H s G s G H sS P P P

λ
φ φ φ= +∫ ∫  (5.9) 
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where
G

P and
H

P are projection operators defined as before in chapter 2.  This establishes 

the spinfoam, ( , )i e o
Γ , for the information (signal) field, s on the informaton particle 

( , )i e o . 

 At this point, we may substitute the Zadeh GC for the quantum logic in the above 

spinfoam formalism by virtue of the isomorphism between a quantum logic and a 

generalized fuzzy logic implementing Lukasawiez operators.  The GC defined by 

( , , )G X r R= defines a logic embeddable in the spinfoam formalism. 

Complex systems represented as either n-dimensional, 1( ,..., )
n

x x x= , countably 

infinite-dimensional, 1( ,...)x x= or continuum, ( )x xα α∈Ω=  vectors over a field are 

inherently dynamic as state information must be accounted for in the analysis of a general 

organism.  Hence, the dynamic system is represented as a stochastic process, 

( ) ( ( ))x t x tα α∈Ω= .  A general dynamic information model involving quantum 

microdynamics at microlevel organization, thermodynamics at mesolevel organization 

and the variation minimax value of an entropy functional represented by a Hamiltonian-

Lagrangian at macrolevel organization is presented.  The information meso and 

macrodynamics are governed by the imposition of the variational principle (VP) applied 

to higher-level Hamiltonian-Lagrangian systems describing the mentioned meso and 

macrodynamics with sustained contribution from the microlevel quantum dynamics.   

The quantum microlevel dynamics will be supplemented with general uncertainty 

(GTU) extensions from Zadeh.  The classical version of the information macrodynamic 

interplay is an idea from the concept of information macrodynamics (Lerner, 2003).  An 
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info-holarchy generalization of information macrodynamics will manifest the interplay of 

organization levels in an info-holarchy.  In this process model, informatons (information 

particles) eventually dictate the macro manifestation of matter, energy, and spacetime 

flow from their collective microprocesses. 

Evolutionary Model For Informatons 

Zadeh’s GTU process operators will now be constructed for informaton-generated 

organisms.  Informatons as bipartite (fused source and receiver) entangled quantum 

gravity systems are proposed to follow relativistic laws such as Lorentz invariance as in 

the application to spinfoams in LQG.  Stochastics come in the form of quantum noise.  In 

this model, our generalization using Zadeh’s GTU will be attached to such formalism, 

followed by general evolutional rules.  Hence, a GTU-LQG-evolutional model will be 

built for informatons.  As the e and o components of informatons are abstract entities that 

do not exist in isolation, as far as information conveying bodies are concerned, 

informatons will be treated as single abtractions of information or “particle placeholders”.   

First, a continuous relativistic quantum-stochastic time evolution model for the 

microdynamics of an informaton will be constructed, followed by the application of the 

GTU.  This will serve as an approximation to the discrete Planck-scale LQG model for 

information setup earlier as a model for informatons.  Then a mechanism for clustering 

informatons in an attempt to bridge to macrostates of larger informaton-based 

organizations will be built.  The general concept of info-macrodynamics (IMD) through a 

micromodel of stochastic equations for small grain systems and macrodynamics of 

clusters following a Shannon entropy law and utilizing a variational principle applied to 
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an information entropy functional, is adapted in part from Lerner (2003).  This was 

reviewed and discussed in chapter 2.  Lerner constructs a classical model for both the 

macro and microstructures.  Here, an attempt will be made to construct a chain of 

progressively more general models, starting with a nonrelativisitc quantum version, 

proceeding to a relativistic-quantum model and then generalizing towards a Zadeh GTU 

model. 

Nonrelativistic quantum stochastic calculus is an attempt at modeling continuous 

nonrelativistic quantum particles that have quantum noise modeled analogously to 

Weiner processes (Hudson & Parthasarathy, 1984).  Especially directed toward Bosonic 

particles, this calculus engenders the description of irreversible quantum processes 

through the use of generalizations to Brownian and Poisson processes for semi-

martingale models.  Consider the solution of the quantum Itȏ stochastic equation: 

 
( )* *

0

1
( ) 1

2

1

t t t t t t t
dU iH L L dt LWdA LdA W U FU

U

+ = − + + + + − Λ =  
=

 (5.10) 

where for each 0t ≥ ,
t

U is a unitary operator defined on the tensor product space 

2( ( , ))L
+⊗Γ� � � , where � is the Hilbert space containing the possible component 

states, Γ is the Fock space containing the possible component noise elements (general 

uncertainty), and , , ( )H L W ∈ � � , are bounded linear operators on � , with 

 and W H being self-adjoint.  The solution of (5.10) is interpreted as the evolution of a 

system composed of a particle (in this case an informaton) whose Hilbert space of states 

is � , interacting with a a noise process residing in the Fock space 2( ( , ))LΓ � � .  More 
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generally, for nonUnitary operators, this can be written as a homogeneous linear quantum 

stochastic differential equation: 

 
3 2 1 0

0 1,

t t t t t t t
dU L dt L dA L dA L U GU

U

+ = + + + Λ = 

=
 (5.11) 

Hudson and Parthasarathy have shown that if the quadruple, 0 1 2 3{ , , , }L L L L are strongly 

admissible in � then the system has a unique solution, *
t

U which is an adapted process 

and strongly continuous in the tensor product space 2( ( , ))L
+⊗Γ� � �  (Hudson & 

Parthasarathy, 1984).  
i

L is strongly admissible over � if ( )
i

L⊆� � .  A (symmetric) 

Fock space, ( )Γ � over the space � is defined as
0

( ) ( )
n

n

∞

=

Γ = ⊗Γ∑� � where 0 ( )Γ =� � , 

and
1

( )
n

n
i=

Γ = ⊗� � .  *
t

U  is an adapted process in ( )Γ � if for any ] ]0,  
t t t

t U U I> = ⊗  

where ]t
U is an operator that acts on the tensor product space 2( (0, ))L t⊗Γ� and ]t

I is the 

identity operator acting on the tensor product space 2( ( , ))L tΓ ∞ .  The 

operator 2 2
1: ( ( )) ( ( ))

t n n
A L L

+ +
−Γ → Γ� � is called the annihilation operator,

t
A

+ the creator 

operator, and
t

Λ the particle number or conservation operator.  These particle operators 

are also martingale operators, i.e., ( )  for 
t s t

E A A s t= > (Holevo, 2001, pp. 119-127).  

These operators are defined formally on 2( ( , ))L
+Γ � � as: 
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[0, ]

0

0 [0, ]

0

( ( )) ( ) ( )

( ( )) | ( )

( ) | ( )t

t

t

t t

t

A g g s ds g

A g g

g ge

ε

εχ
ε

ψ ψ

ψ ψ εχ
ε

ψ ψ
ε

+
=

=

=

∂
= +

∂
∂

Λ =
∂

∫

 (5.12) 

The Heisenberg relationship[ ]t tA A tI
+ = exists, that is, the commutation relations follow: 

( ), ( ) min( , )
i j ij

A t A s t sδ  =  .  The incremental time evolution can be given as: 

 ( ) ( ) ( )
t j j j

V A s A t s A t  = + −   (5.13) 

The differential forms are defined as: 

 

t t dt t

t t dt t

t t dt t

dA A A

dA A A

d

+

+ + +
+

+

= −

= −

Λ = Λ − Λ

 (5.14) 

and the multiplication rules for the differentials are defined by the table: 

Table 2 

Itȏ Multiplication Rules for Quantum Differential Operators 

Adapted from Hudson and Parthasarathy,1984 and Boukas, 2004. 

Operators 
tdA
+
 tdΛ  

tdA  dt  

tdA
+
 0 0 0 0 

tdΛ  
tdA
+  tdΛ  0 0 

tdA  dt  
tdA  0 0 

dt  0 0 0 0 
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The processes depicted by: 

 
( )

t t t

t t t t

B A A

P A A tλ λ

+

+

= −

= Λ + + +
 (5.15) 

are the quantum analogies to the Brownian process and Poisson process of intensity λ , 

respectively, via the vacuum characteristic functionals (Parthasarathy, 1992), 

 

2

2

( 1)

(0), (0)

(0), (0)

t

is
t

ts

isB

isP e t

e e

e e
λ

ψ ψ

ψ ψ

−

−

=

=
 (5.16) 

This model assumes that an entangled informaton is the particle placeholder of interest.  

Next, the noise field in the above quantum stochastic model will be transformed 

using the group of Poincaré transformations, * 2 *
P L+ += ×R where *

L+ is the proper 

orthochronous Lorentz group, as a prerequisite for GR consideration (Frigerio & Ruzzier, 

1989).  In the operator 3L of the evolution equation (5.11) is embedded the operator 

H considered an inertial system (IS).  Now apply a Poincaré transformation, *
p P+∈ to 

H resulting in the transformed IS, p
H pH= .  Let *

3

1
( )

2
p pL iH L L= +  be the newly 

transformed evolution operator in (5.11).  We write the new linear relativistic quantum 

stochastic differential equation with Poincaré transformation p as: 

 
*

3 2 1 0
p p

t t t t t t t
dU L dt L dA L dA L U G U = + + + Λ =   (5.17) 

Then applying the above conditions as in (5.11), (5.17) has a unique solution, p

t
U which 

is an adapted process and strongly continuous. 
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 We now consider the time evolution of general informatons, that is, of an N 

multipartite systems with entanglement.  Busse (2006) considered multipartite Markovian 

open systems that are capable of being entangled and the informaton model will be 

adapted, in part to this formalism.  Consider the case of a di-dimensional state space for 

the ith particle in an open quantum system (Breuer & Petruccione, 2006, pp. 105-110).  A 

Markovian open quantum system follows the time evolution of the stochastic differential 

equation: 

 

[ ]
1

† † †

,

1 1
( )

2 2

N

t t t k t

k

k t k t k k k t t k k

i
U U H U U

U J U J J J U U J J

=

= = +

= − − −

∑
ℏ

� �

�

 (5.18) 

where 
kJ is the (generally nonHermitian) jump process defined for the kth informaton.  

The first term on the RHS of (5.18) defines the unitary evolution, while the second part 

defines the coupling between the system and its surrounding environment.  Here, 

1
max

i
i N

N d
≤ ≤

≤ .  Entanglement dynamics will be described for this open system evolution.  

Now consider a general entanglement measure, a monotone map M such that: 

 : ( ) ,  where ( )t t t NM U M U U L→ ∈ ∈R �  (5.19) 

A direct propagation of entanglement in which M is directly propagated under the action 

of a system Hamiltonian coupled with environment will be done.  This avoids some 

computation problems.  M contains only reduced information on the system and as such 

will depend on function, 0( )if U  of the initial state, 0U .  In other words, the evolution is 

governed by a mapping in which  
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0

,

( )
(0) ( )

i

i

H

f U
M M t→

�

 (5.20) 

In the spirit of solving the master equation (5.18) with entanglement measure M, and the 

above suggestive form, consider the differential equation: 

 0 0( ) ( ( ), , , , ( ) )
k i

M t f M t H J U p U=ɺ  (5.21) 

A computational approach will be taken involving Monte-Carlo simulation of quantum 

trajectories { }( )
i

tψ .  First consider a multipartite system S that is described by a mixed 

state ( )SU t which is weakly coupled to an environment (bath dependent), consisting of 

jump operators, { }kJ .  Its master equation is: 

 ( ) ( , ) ( )
S S k S

U t H J U t=ɺ �  (5.22) 

Apply a quantum Monte-Carlo simulation to (5.22) which will produce a series of 

runs{ }( )
i

tψ such that the average trajectory is: 

 
1

1
( ) ( ) ( )

N

i i

i

U t t t
N

ψ ψ
=
∑≃  (5.23) 

and which solves (5.22).  Utilizing this Monte-Carlo series, one can average over the pure 

state expectation values in this ensemble to produce: 

 
1

1
( ) ( ) ( )

N

i i

i

A t t A t
N

ψ ψ
=
∑≃  (5.24) 

Using the technique of Lindbladian transformations, the entanglement operator can be 

written as: 

 
{ },

1

1
( ) inf ( ( ) )

N

i
U

i

M U M t
Nµ

ψ
=
∑≃  (5.25) 
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where { }*,Uµ is a parameterization in the optimization of (5.25).  Taking the continuous 

limit, 

 
continuous

measurement

setups

1

1
( ) inf ( ( ) )

N

i

i

M U M t
N

ψ
=
∑≃  (5.26) 

and the computation of the entanglement measure is completed.  See von Marc Busse 

(2006) for details on the computational scheme for its final calculation.  Informatons 

under the master evolution equation (5.22) can then be applied to Lerner’s controlled 

constrained optimization formalism for microlevels. 

Zadeh (2005) general uncertainty (GU) constraints may now be applied to the 

underlying process in (5.17).  To do this we appeal not only to Zadeh’s GTU, but to 

notions for uncertainty in processes so as to build a legitimate uncertain process.  This 

work was originated by Liu in which a series of notions on fuzziness and uncertainty in 

variables was extended to processes and subsequently to a concept for calculus of 

uncertain process (Liu, 2008).  

Recall that fuzzy logics using the Lukasiewicz operators completely generalize 

Quantum logics when a series of fuzzy subsets of the underlying measure space are used.  

To this end, we assume this decomposition.  Next, a credibility measure, denoted by 

Cr extends the idea of a measure space for fuzzy variables when as a set function it 

satisfies: 

(1) normality, ( ) 1Cr Θ = ,  

(2) monotonicity, ( ) ( ) whenever Cr A Cr B A B≤ ⊂ ,  
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(3) self-duality, ( ) ( ) 1,  for any c
Cr A Cr A A+ = ∈ � and  

(4) maximality, { } ( )( ) sup ( ) for any events  with sup  <0.5i i i i
i i

Cr A Cr A A Cr A=∪  

where � is the power set of a nonempty set, Θ .  Normally, Θ will depict the sample 

space.  A fuzzy variable is then a function, : ( , , )f CrΘ → R� .  A fuzzy process is a 

function, : ( , , )tX T Cr× Θ → R� where T is an index set, so that for each index t, 
tX is a 

fuzzy variable.   

A fuzzy process 
tX is said to have independent increments if the increments 

{ }
1 0,...,i it t

i k
X X

− =
− are independent fuzzy variables for all 0 1 ... kt t t< < < and it is said to 

have stationary increments if for any given 0t > ,{ }s t sX X+ − are identically distriburted 

fuzzy variables 0s∀ > .  A fuzzy process 
tC is a C process if: 

(1) 0 1C = , 

(2) 
tC has stationary and independent increments, 

(3) Every increment
s t sC C+ − is a normally distributed fuzzy variable, with mean, 

et (drift) and variance, 2 2
tσ (σ  diffusion) whose membership function is: 

 ( ) 2 1 exp ,  
6

x et
x x

t

π
µ

σ

  − 
= + ∈   

  
R  (5.27) 

When ( )2 2, (0,1)et tσ = then the C process is a standard C process.  A fuzzy calculus may 

now be constructed and defined based on a fuzzy integral, with a chain rule and 

integration by parts using standard C processes (Liu, 2008).  Moreover, if 
tC is a standard 

C process and f and g are functions then, 
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 ( , ) ( , )t t t tdX f t X dt g t X dC= +  (5.28) 

is called a fuzzy differential equation whose solution is a fuzzy process
tX that satisfies 

(5.28) identically in t.  Now define a chance space to be the product space of a classical 

probability space and credivility space, ( ) ( ), , , ,P CrΘ × Θ� � .  A hybrid process is a 

function ( ) ( ): , , , ,tX T P Cr× Θ × Θ → R� � , T an index set.  A hybrid process, 
tX has 

independent hybrid variables and stationary increments in an analogous way to fuzzy 

processes.  Define a (standard) D process as ( ),t t tD B C= where
tB  is a (standard) 

Brownian process and 
tC is a (standard) C process.  When

tB  is a standard Brownian 

process and 
tC a standard C process, then the hybrid process defined as: 

 
t B t C tX et B Cσ σ= + +  (5.29) 

is called a scalar D process with drift e, random diffusion, 
Bσ , and fuzzy diffusion, 

Cσ .  

The hybrid process, 

 B t C tet B C

tX e
σ σ+ +=  (5.30) 

is called a geometric D process.  If 
tB  is a standard Brownian process,

tC a standard C 

process, and f, g, and h are functions then, 

 ( , ) ( , ) ( , )t t t t t tdX f t X dt g t X dB g t X dC= + +  (5.31) 

is called a hybrid differential equation whose solution is a hybrid process
tX that satisfies 

(5.31) identically in t.  Finally, we define an uncertain variable, process, and calculus.  

Let Γ be a nonempty set, and �  an algebra over Γ .  An element Λ∈Γ is called an event 
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analogous to our other process type events.  Let ( )M Λ → R assign a level for Λ such that 

the following are satisfied: 

(1) (normality), ( ) 1Γ =� ,  

(2) (monotonicity), 1 2 1 2( ) ( ) whenever Λ ≤ Λ Λ ⊂ Λ� � ,  

(3) (self-duality), ( ) ( ) 1,  for any event cΛ + Λ = Λ� � and  

(4) (countable subadditivity), { }
1 1

( ) ( ) for any events i i i
i i

∞∞

= =

Λ ≤ Λ Λ∑∪� �  

The set function, �  is called an uncertain measure if it satisfies the above four 

conditions (axioms).  An uncertain variable is a measureable function, 

: ( , , )X Γ → R� � , where ( , , )Γ � � is an uncertainty space and for any Borel set B of 

real numbers, { }| ( )X Bγ γ∈ Γ ∈ ∈ � .  An uncertain process is an uncertain function, 

: ( , , )tX T × Γ → R� � , T an index space, so that { }| ( )tX Bγ γ∈ Γ ∈ ∈ � for each t.   

An uncertain process has independent uncertain variables for all times and 

stationary increments for a given time in an analogous manner to the above definitions of 

processes.  A canonical process is an uncertain process 
tW that satisfies the following: 

1. 0  0 and is sample continuous,tW W=  

2.   has stationary and independent increments, andtW  

3. [ ] [ ]1 1=0 and 1E W Var W =  

It follows that [ ]=0tE W .  If dt is an infinitesimal time interval and 

t t dt tdW W W+= + then [ ] 0tE dW =  and 2 2
tdt E dW dt ≤ ≤  .  A chain rule and integration 
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by parts can be suitably defined for canonical process.  Moreover, is 
tW is a canonical 

process and f and g are functions, then: 

 ( , ) ( , )t t t tdX f t X dt g t X dW= +  (5.32) 

is called an uncertain differential equation whose solution is an uncertain process
tX that 

satisfies (5.32) identically in t. 

The Zadeh GTU process generalization to these processes follow from these 

definitions by replacing the uncertain process by the appropriate constraint in the 

definition of the GC ( , , )G X r R= and applying the suitable calculus framework for the 

granularity defined, i.e., the fuzzy and uncertain component in G.  Again, the quantum 

stochastic is fully generalized in this formalism.  It follows from the development for a 

relativistic-quantum Itȏ stochastic model that one can naturally extend to a relativistic-

GTU Itȏ stochastic model: 

 ( , ) ( , )t t t tdU f t X dt g t X dW= +  (5.33) 

where f and g are general functions, and 
tW  is a ( , , )G X r R= process.  The process 

defined in (5.33) will then be referred to as the nonevolutional version of the GTU-

process.  The general evolutional version will be developed below.  Prior to that 

development, a fractal generalization to the differential system of (5.33) will be 

constructed. 

 In the development of all the extensions to Itȏ processes above, differentiability 

(stochastic differentiability) was assumed.  Consider now a generalization to these 

process systems where fractility and continuity replace differentiability.  Recall that all 
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these differentiable systems are continous approximations to the discrete systems of 

spinfoam LQG and Planck-scale processes.  Quantum mechanical pathways contributing 

to the path integral of QM have been shown to be more akin to nondifferentiable fractal 

of dimension 2 (Feynman & Hibbs, 1965).  This study continues to hold that informatons 

behave discretely within such environments, which are not plagued by singularities and 

of which no experimental evidence of continuity has been produced.  Of course, 

continuity is a mathematical concept that is philosophically not falsifiable.  Fractal 

systems replace differentiable ones by using a scale-resolution dependent surrogate 

function, , 0fε ε > for a differentiable one, f and a fractal Lagrange system, ( , )x ε� for a 

differentiable Riemannian Lagrange system, ( )x�  (Nottale, 2007).  The new fractal 

displacement, fd X can be written as the composition of a differentiable displacement 

dx and a pure fractal one, ξ : 

 fd X dx dξ= +  (5.34) 

In Nottale (2007), the fractal presented was of dimension 2, as presented by 

Feynman.  Because of the nondifferentiability of ξ , stochastic differentials are used.  

Nonetheless, this definition propagates through the Itȏ stochastic differentiation process 

as well.  The scale-resolution, ε , remains the parameter of interest in the final Itȏ 

differential.  The GTU-process differential for a fractal system can then be generalized to 

a synonymous system: 

 ( , ) ( , )f t t f t f td U f t X d t g t X d W
ε ε

ε ε= +  (5.35) 
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where ,  ,  ,  and t tU f g W
ε ε

ε ε are the corresponding fractal operators.  One important effect 

of the scale-resolution method is that these fractal systems become scale-relative, i.e., 

dependent on the scale resolution of the level in a fractal system.  This is then relevant for 

different scales and holonic levels in an info-holarchy.   

In the absence of a fully verifiable unified theory of everything (TOE) and hence 

of information, it has been posited that the universe’s laws are evolutionary, that is, 

physical laws change with conditions based on thermodynamic entropy or other measures 

of disorder or nonergodicity.  This is championed most forcefully by the biologist 

Kaufmann and the physicist, Wheeler, along with skeptics of static grand unification 

theories such as Smolin (Wheeler, 1983; Kaufmann, 2000, pp. 141-265; Smolin, 2007; 

Frank, 2010).  Kaufmann, more forcefully posits that natural selection is manifested by 

local interactions.  Evolution is the result of an auto-catalysis brought on by the 

microcoopetition between agents in an organism.  Auto-catalysis is simply a chain of 

causal catalyses that loops back onto itself and each catalysis is an exchange of 

information between agents.  This exchange, as posited in this study, is an interaction of 

informatons in an info-holarchy.  Hence, evolutional operators acting on an organism are 

auto-catalytic chains of informaton microinteractions, the stuff of informaton 

connectivity.   

Evolutional processes will now be introduced into the adaptive informaton model. 

They will be based on a general category of four evolutionary trait operators - (1) genetic, 

(2) epigenetic, (3) behaviorial, and (4) symbolic variation (Jablonka & Lamb, 2005).  

Genetic operators are microscale functors acting on the genotype or microagents of a 
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system.  Epigenetic operators act on the phenotype or macroscale of a system.  Behavior 

operators act on certain substructures of the system that designate the major behavorial 

processes of that system.  Finally, the symbolic variation operator acts on the equivalent 

communicative apparatus, some would say language substructure of the system.  Cross 

causality is evident within these operators. 

These inheritance operators generalize Darwinian evolution that is solely 

dependent on genetic information transmission and communication.  These operators, in 

no small way, also generalize the ideas of Hamilton and Dawkins - the selfish (spiteful) 

gene paradigm (Hamilton, 1970).  In this broad spectrum of ideas, replicators are general 

entities that are capable of being copied.  Vehicles are entities that contain groups of 

replicators with the intent of alleviating their survivability and consistency.  Furthermore, 

gene processes may be described by the transgressions in a game theoretic setting, 

possessing strategies, payoffs, and competitors (other genes or players).  These are the 

tenets of evolutionary game theory further progressed by Hamilton and Smith (Hamilton, 

1967; Smith, 1982).  Dawkins further generalized this structure of inheritance by positing 

that genes “act” to increase the probability of their trans-generational propagation, 

sometimes to the detriment of the vehicle(s) containing them (Dawkins, 1989).  Hence, 

the word “selfish” in their description. 

Pre-dating the development of the gene theory of reproduction was the ingenious 

work of the polymath mathematician von Neumann. Von Neumann developed the 

concept of self-replicating machines (SRMs) (he termed it “universal replicator”), 

abstract computational entities that are capable of self-replicating or copying their 



 

 

280

architectures for progeny (von Neumann, 1966). In this paradigm of computation, the 

SRM consists of a triplet ( ), ,R M P , the resources for construction, R, a manipulator to 

build such a construction, M, and a program, P,  for its construction that is self-referential 

in the sense that it copies these instructions into the progeny.  

This first model led to the refined cellular automaton. This is the precise nature of 

gene replication. In a sense, SRMs may be made general to self-replication. Furthermore, 

self-assembly can be built into the instructions as well so that the fathering SRM may 

further enhance or change its architecture and update its instructions for such. This ability 

to do further self-assembly and change is an extension of the original von Neumann SRM 

and gives a means to achieve the other types of evolutional operators mentioned here. A 

contemporary prototype of a SRM is the open source GNU GPL project, Replicating-

Rapid (RepRap 2.0) in which a robot was able to successfully replicate all of its plastic 

parts autonomously, forming its child machine (Bowyer, 2006). See Figure 24 below. 
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Figure 15. RepRap rapid self-replicating machine 
Adapted from “RepRap v2 Mendel: Self-replicating fused deposition modeling (FDM) 
machine” In A. E. W. Rennie, C. Bocking & D. M. Jacobson (Eds.), Proceedings of the 
8

th
 National Conference on Rapid Design, Prototyping & Manufacturing, 1-8. By 

Bowyer, 2010. Copyright 2010 Bowyer. Reprinted with permission under the GNU Free 
documentation license – Creative Commons Attribution-ShareAlike 3.0. 
 

  Dawkins extends this idea to information transmission by analogizing to an 

entity of information he referred to as a meme.  The meme was then the equivalent gene 

for information. Memes can then be viewed as units of information lacking a particular 

physical description. Informatons endeavor to fulfill this gap for information 

subcomponents that build observed information chunks in the form of, among other 

entities, memes.  In this sense, informatons will be envisioned as subquanta of memes 

and other forms of information transmission. Each of the four evolutional operators that 

are considered, are constructed via informaton structures or info-holarchies.  Epigenetic 

operators center on the processes of meme transmission via nonDNA media, the 
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epigenetic inheritance systems (EISs) that form the ultimate phenotype of the 

organization.  

Behavorial operators focus on meme transmission by acquired behavioral 

patternization through experiential exposure, socially mediated transmission and cultural 

meme changes. Lastly, symbolic variation operators concentrate on the processes 

surrounding language or sign transmission between entites, the semiotics of information.  

Semiotics will be discussed in detail and generalized for the informaton model in a 

subsequent section. The ongoing arguments between selfish gene proponents and 

opponents center on the relative importance of the vehicle-replicator relationship, i.e., 

which is the more important entity for inheritance. In this study, this distinction is 

vaporized because the various holonic levels of the info-holarchy - the vehicle in one and 

replicators and their subcomponents in others, equally collaborate for the whole 

organizational prowess and survivability. 

Corresponding to each general evolutional operator will an information pipe, an 

operator on input parent information producing prodigal information corresponding to 

that evolutional concept.  The four evolutional information pipes corresponding to the 

major evolutional operators of Jablonka & Lamb will be treated as separate information 

components within each physical component that will share information particles or 

informatons, although cross causality is valid between these evolutional pipes (Jablonka 

& Lamb, 2005. pp. 245-317).  This genetic leakage between operators is accomodaed for 

by utilizing cross composition, that is, components that consist of cross products between 

operators.  Each of those information pipes exhibit Markovian behavior in the following 
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fashion: the genetic information pipe is governed by a complex process in which 

information flows from one generation to another where various history data may be 

passed based on the evolutional operators of mutation, crossover, and reproduction.  

These operators are Markovian because they possess memory of prior information.  The 

microlevel equations discussed must then accommodate Markovian dynamics. 

 

 

 

 

 

 

 

 

Figure 16. Evolutional information flow pipes as state operators 
  



 

 

284

Macrodynamics are generated based on utilizing the variational principle (VP) 

applied to a path integral of the expectation of an information divergence between the 

microstate solutions,
tU of the before mentioned GTU micro model and the Lagrangian, L 

of the diffusion process, *1

2
t t tb σ σ= of a Weiner-Levy stochastic process.  This 

divergence measure is given by: 

 ( , ( ( ))) [ log log ( )]t t t tD U L b t Tr U U L b= −  (5.36) 

By optimizing this measure, a sort of “regularization to macro order” is established for 

the random observations, ( )x t .  This divergence can be viewed as a functional, ( )b tS on the 

space of Itȏ processes in the microdynamic conditions: ( ) ( , ( ))
tb t t tS U D U L b= .  Now 

utilize the quantum variation minimax principle on
tbS .  Denote the variational minimax 

solution by vp

tU .  The extremal trajectories of vp

tU dictate the macrolevel process, 

resulting in a proper probability for the macro entropy functional,
PFS .  Using the phase 

space coordinates ( , )t tU Ψ , where b
t

t

S

U

∂
Ψ =

∂
, the quantum Hamilton equations are: 

 

,t

t

t

t

HdU

dt

Hd

dt U

∂
=

∂Ψ

∂Ψ
= −

∂

 (5.37) 
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Together with the differential constraint condition, *( , ) 2 0t
t t t t

t

C U
U

∂Ψ
Ψ = + Ψ Ψ ≥

∂
the 

macro dynamic model is regularized.  Here H is the ensemble average value of H over 

the quantum trajectories.  The solution to this Hamiltonian system is: 

 
* 1

( )
2

t t
t t

t

dU
H t b

dt U

∂Ψ
= Ψ = −

∂
 (5.38) 

Information transfer from microlevels to macrolevels is optimized when information loss 

in H is minimized (Lerner, 1998).  In the classical model, Lerner uses a double-coping 

feed-back control mechanism (vector), v and conjugate vectors possessing a macro model 

process, ( )A t defined on the discretized points 1[ , , , ]nt t t∈ as: 

 

( ( ))

2

( ) ( ) ( )

( ) ( ( )),  where ( ) ,  1,...,

( ) 2

t
t

t

i i i i

t

A U v t

b

A t v t u t

A t t t j i n

v t U

λ λ α β

+
Ψ =

=

= = − =

= −

 (5.39) 

This leads to the formulation:

0

( )
2

t

t

t

b
A t

b dt
=

∫
, leading to the macromodel differential 

equation: 

 ( ( ))t
t

dU
A U v t

dt
= +  (5.40) 

In general, using a quantum variational principle, if n n

n

aφ ψ=∑ is a normalized 

wavefunction (mixed quantum state) and H the Hamiltonian, 

then | | gH Eφ φ ≥ where gE is the ground state (lowest energy state).  Hence, if 
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( )
| |

|

H
ε

Ψ Ψ
Ψ =

Ψ Ψ
, then 0Eε ≥ .  This is the target for an approximation to a ground 

state and the variational minimax problem of finding a greatest lower bound ground 

energy. 

 

Figure 17. Micro/meso/macro multiscale model 
  

Corresponding to the four evolutional information pipes will be four state 

densities, , , ,  and B S E Gψ ψ ψ ψ manifested by four distinct GTU Itȏ processes.  This four-

way information pipe between components of a system is shown in Figure 30 above.  

While these information pipes may share a certain amount of information and cross-

pollinate, the microdynamic system for each will be distinct.  The evolutional operators 

will be in the form of genetic functionals utilizing a fitness function to select quantum 
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states in the stream and hence influence the new state.  Let k

tψ denote the state of the kth 

component at time t.  Form the fitness operator, fU based on a fitness function, f applied 

to comparing the pair ( ),k j

t t
ψ ψ as: 

 ( )( )k j k j k

f t t t t tU fψ ψ ψ ψ ψ⊗ = ⊗ +  (5.41) 

Applying this to the case of comparing a general component to the ground-state 0
i
, one 

obtains a “normalized” value of fitness of a component,  

 ( )( 0 )k k k

f t t tU fψ ψ ψ⊗ = ⊗  (5.42) 

Consider a general mixed quantum state of the ith component, 
1

( )
N

t n ii i
n

a nξ
=

=∑ .  

Applying the fitness operator, 

 0

0

( ) ( 0 )

( ) ( ( ) )

N

f t f ni i i
n

N

n i i i
n

U U a n

a n f n

ξ
=

=

= ⊗

= ⊗

∑

∑
 (5.43) 

Selection operators, SU
λ
can be defined based on various schemes such as (i) proportional 

selection (roulette wheel), (ii) pair-wise tournament, and (iii) rank selection.  In 

proportional selection, a component, i is selected with probability i

i

n

n

f
p

f
=
∑

(a roulette 

wheel is turned with the component taking up 100 %ip of the wheel slots) where its 

individual fitness value is
if .  In pair-wise tournaments, two components are chosen at 

random and the one with the largest fitness value is chosen.  In rank selection, all 
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components will be ranked based on their respective fitness values and the larger ones are 

then selected.  In all three cases, more than one component is compared.  If the 

comparison is made against a ground-state energy, a selection operator, SU
λ
can be based 

on a fitness operator, f and threshold value, λ .  

 
if ( ) ,

( )
0 otherwise

t f ti i

S t i

i

U
U

λ

ξ ξ λ
ξ

 >
= 


 (5.44) 

i.,e., ( ) ( )cS t t tAi i i
U

λ λ
ξ χ ξ ξ=  where { }: ( )t f ti i

A Uλ ξ ξ λ= < .  In a proportional 

selection operator, if 
iR is a region in the interval [0,1] with length

ip , representing the ith 

component, and ([0,1])URand is a uniformly random selection in [0,1] then 

 
if Rand ([0,1]) R ,
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0 otherwise
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In a rank selection, if 
1 2

...
ni i ir r r≤ ≤ ≤ is the ranking of fitness (ranked-ordered 

permutation) of all indexed components (1, 2,..., )n  in the system, and when
kj i= for 

some 1 k n≤ ≤ , then 

 
if ,

( )
0 otherwise

t k mi

S t j

i

i i
U

λ

ξ
ξ

 ≥
= 


 (5.46) 

for some threshold minimum ranking ,  1m m n≤ ≤ .  Crossover operators, 
CU  will be 

defined using a convex combination of a process,
tu dependent on a probability, ( )p θ with 

parameter θ , 

 ( )( ) 1 ,  ( )k j k j

C t t t t t t tU u u u pψ ψ ψ ψ θ⊗ = + − ∼  (5.47) 



 

 

289

Mutation operators, 
MU  will be defined as, 

 ( )( ) 1k k

M t t tU Cwψ ψ= +  (5.48) 

where C is the amplitude of a mutation perturbation process,
tw , with ( )tw q τ∼ , 

distributed as the pdf ( )q τ with parameterτ .  An evolutional operator on GTU states can 

then be generalized as the composition operator, , ( )k

M C S f t
U U U ψ� � .  Denote the four 

evolutional operators by , , ,G E B SV
U U U U . Each can subsequently be written in the above 

form–a specification of mutation perturbation, crossover mixture, selection criteria, and 

fitness function f, i.e., ,( ( ,  , , ,h k h h h k

t M C S f t
U U U U h G E B SVψ ψ= =� � .  The grand 

evolutional operator, E
U , taking into account cross-causality, can be constructed by a 

multidimensional cross component functional: 

 ( )( ) ( )( ),, , , , , ,

k h h h h

E t M C S f t
k G E B SV h G E B SV

U U U Uψ ψ
= =

= � �  (5.49) 

which produces a 4-D evolutional output that manifests the new state of the four 

evolutional pipes of the system.  These evolutional microprocesses will dictate four 

macrodynamic phenomena.  These macrodynamics will, in turn, dictate evolutional 

processes, such as reproduction, death, modularity, and holonic behavior homogenized 

into a master macrodynamic.  The mesodynamics are to be defined by the master 

information transfers that form intermediate or mesoscopic levels in the holarchy via the 

macrodynamic variational solution.  This variational solution takes the form of a 

statistical thermodynamic process in this intermediate stage and so, mesoscopic levels are 

dictated by thermal flow.  Mesoscopic levels will be defined as modules that exhibit 
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weaker inter-dependency than other inter-level dependencies.  This set of weakly inter-

dependent modules may consist of more than one module or level and hence, mesoscopic 

regimes may consist of multiple levels in the holarchy.  Mesoscopic levels are inherently 

observer-dependent because they are mesoscopic in scale.  An observer component 

possesses a sensorial boundary of which a level-lens is fundamental.  This level-lens 

dictates the unaided spectra of observation for the observer.  Mesoscopic levels are 

defined by this level-lens as those which as observable without aid, i.e., within the natural 

level-lens of the observer.  The optical spectrum of humans dictate what is visual 

(rhopsidan molecules).  This optical spectrum is thus the natural optical mesoscopic level 

of observation for humans. 

 

Figure 18. Mesoscopic observer-dependence lens 
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A general systems-theoretic approach to building a state system that exhibits 

dynamic behavior manifested in chaotic and quantum microprocesses and fluid-dynamic 

macroprocesses was presented by Selvam (2007).  In this model, each component was 

simulated as rotating fluids emulating small eddies.  This compares similarly with the 

quantum-general uncertainty stochastic Itȏ processes in the model presented. 

Building Holarchies 

Quantum entangled informaton games and holarchies, having now been 

described, will be utilized to construct the proposed information framework, the info-

holarchy. This dynamic structure will also serve as a calculus for forming CAMS 

organization.  The dynamics described by the GTU information macrodynamics and 

LQG-spinfoam models for informatons can be utilized to construct informaton states.  

First, I describe the setup for establishing a quantum game of entangled particles 

(informatons) using the general rules of holons as a backdrop. 

The mainstay of holarchy development is the procedure of adding and deleting 

members from a given holonic level.  The morphology of the holarchy is determined by 

the width at each holonic level and the depth of the holarchy.  We denote the width of the 

l
th holonic level of a holarchy 

n� of depth n at time t by ( )lw t .  This width is determined 

by the dynamics of holonic activity at neighboring and resident holonic levels.  Note that 

the depth may be time dependent as well since a new holonic level can dynamically 

appear or disappear.  Let ( ), , , ,G n C A J ω=  be the game for the holarchy 

{ }1, ,n nH π−=� 
 .  We will convert the satisfaction and resource rule set of H into a 



 

 

292

strategy S for coalition building based on utilities and a GTU structure.  Consider the 

holonic state transition matrix in Table 1.  A holon (agent) has a role within its present 

holon level.  So, the state of a holon can be described by the pair, ( , )l R .  These roles and 

their interactions are uniquely determine by the organization ( ), ,R I P= 
 
 

 .  Within 

this organization lay the rules and patterns of behavior and interaction.  These will then 

be adapted from the game structure ( ), , , ,G n C A J ω= .  In this setup, the holarchy
n� will 

be overlaid with the lattice of informatons (entangled pairs).  Each holon agent in 
n� will 

then share subsets of informatons with other holons.  For informatons, entanglement is 

fundamental.  Entanglement between informatons means that an event, e or observer o is 

shared by informatons.  In this way a cluster informaton is constructed.  Two bi-partite 

systems (such as informatons) can be partially entangled quantum mechanically if their 

combined state is expressible in a nonseparable way. 

When a holonic level is formed, coalitions of holons are built where affinities, as 

specific divergence measures between any two holons in the coalition holonic level, 

( , )i jh h , ( || )i jD h h , are small, i.e., are within thresholds, ( );
i j

D h h ε< where 0, 0ε ε> ≈ .  

Normally, the representative holon, the HEAD, is compared to the requesting holon for 

membership.  As mentioned before, this process can be weighted across the family of 

holon members producing different types of control in a level, i.e., oligarchy, etc.  Now, 

in the game structure, G, a coalition is formed based on shared and individual utilities of 

the players (holon agents).  The transition matrix in Table 1 will dictate the rules for a 

player joining a holonic level or coalition.  The action rule will then take the form  
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(3.180) with affinity divergence  (3.178).  Recall that statically, 
n� can be affiliated with 

a higraph.  One now endows 
n� with a game G and a GTU higraph, { }, , ,B E ρ π creating 

a GTU type holarchy.  Next, an evolutional GTU-process information macrodynamics 

(5.49) will be implemented to describe the dynamics of 
n� . The resulting dynamic model 

of information, coupled with an LQG-spinfoam lattice defined by the Hamiltonian 

operator of type (3.43) completely describes the evolution of the info-holarchy, 

{ }, , , , ,n G B E ρ π= �I . 

Info-holarchies Iendowed with these LQG-spinfoam spatio-temporal structures, 

general uncertainty GTU macrodynamic processes, and their accompanying information 

fields as described earlier by the hamiltonian field  (5.9), serve as metamodels for an 

information generated universe of objects and their organization.  Consider a holarchy 

view of an info-holarchy and a different, but simultaneous view of the structure through a 

spatio-temporal lattice, i.e., a geographic view.  The holarchic view could be in relation 

to some functional process that informatons share, i.e., energy-mass transfer, socio-

economic goals, community and familial bondage, organization tasks.  The 

accompanying spatio-temporal view relates the spacetime relationship (divergence) 

between informatons, 1,i jS + and ,i kP located simultaneously at different functional 

holarchic levels. See Figure 28 below as an example of these dualistic views. They will 

be revisited when novel displays of organization evolution will be attempted in chapter 4. 
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Figure 19 - Info-holarchy dualisms 

Topoi of Holarchies 

Previously, in chapter 2, we reviewed the power and generalizability possible 

using Topos Theory as a means to represent the mathematical structure of logical 

systems, such as natural processes in physical sciences.  Here, we attempt to represent a 

GUT holarchy or super-holarchy by an appropriate topoi in order to predict a 
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generalization of structure and dynamic.  We have labeled a holarchy 
n� as the GUT-

higraph tuple, { }, , ,B E ρ π together with a GTU game, G with an informaton lattice, 

� and strategies S, developed from the choice of operators, J and starting state, ω and an 

underlying organization, { }1, ,nH π− 
 and rules.  To develop a topoi for this tuple, we start 

with each representation separately.  First, a GTU game, G is one which is endowed with 

a quantum game structure in which the probabilistic rules are replaced by GTU rules.  

Topoi representing LQG spinfoams were presented in chapter 2.  The topoi of random 

processes and underlying calculus, such as in the development of the micro and macro 

models of the information macrodynamics model can be constructed based on the 

structure of the time series of processes in the random process. 

First, we consider the system topos, Sys, of subsystems of the universe.  If 

S Sys∈ and 1S S⊂ is a subsystem of S, then 1S Sys∈ .  Holarchies fall into the topos of 

Sys loosely.  However, they exhibit special behavior, that of self-similar embededness.  

Now attach the propositional and higher order type language that are associated with 

GTU, that is, with the GCL.  We shall call such languages for a GTU-holarchy S, 

( )GCL S�� and ( )GCL S�  respectively.  The set of function symbols (physical quantities) in 

such a topos will be the tuplet of S, namely, ( ) { }( ) , , , ,
GCL S nF GΣ =� � 
 � � .  Now let 

1 2,S S Sys∈ .  We want to define a relationship between a generalized topos disjoint sum, 

1 2S S◊ and its parts, 1 2 and S S and between 1 2 and S S if one is a subsystem of the other.  

This can be done through the relationships between their languages, 

1 2( )GCL S S◊� , 1( )GCL S� and 2( )GCL S� .  It may be reasonable to define an isomorphism: 
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1 2 1 2( ) ( ) ( )( , ) ( , ) ( , )

GCL GCL GCLS S S SF F F◊ Σ ≈ Σ × Σ� � �� � �  (5.50) 

between their respective languages.  First, an arrow 1:j S S→ in Sys is induced and 

defined by a corresponding translation from the languages, i.e., 1( ) : ( ) ( )j S S→� � �  

which means that physical quantities in S are pulled-back to give physical quantities in 

1S .  Arrows that define subsystems, ⊂ and compositions, ◊ are the main builders of this 

topoi.  We add to this the list of operations on Sys: if 1 2 3, ,S S S Sys∈  

1. ( ) ( )1 2 3 1 2 3S S S S S S◊ ◊ ◊ ◊≃  

2. 1 2 2 1S S S S◊ ◊≃  

3. 1 2 1 1 1 2 2 2 1 2 arrows ,  in Sys such that i :  S ,  i :  Si i S S S S∃ → ◊ → ◊  

4. 1 2S S Sys◊ ∈  

5. 1 2 1 1 2 1 2 1 2 2 arrows p ,  in Sys such that p : S , p : S  p S S S S∃ ◊ → ◊ →  

6. The trivial system 1 exists such that, 1 1 11 1S S S◊ ◊≃ ≃  

7. An empty system (terminal object), 0 exists such that, 1 10 0 0S S◊ ◊≃ ≃  

General Semiotics of Info-holarchies 

We close out the description of info-holarchies with a semiotic representation.  

Recall in our discussion on general semiotics of quantum systems in chapter 2, that a 

representatum was mapped to the evolution equations of QM.  In the case of info-

holarchies, the GTU Itȏ differential equation of (4.3.3) is the representatum of the 

semiotic triad for info-holarchies.  Once a measurement is taken of the state of an info-

holarchy, by means of a GTU precisiation operator, :PNL p gΓ →  (substitute a POVM 
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operator for quantum probability), it corresponds to an instanciation of that info-holarchy.  

Therefore, the precisiation operators of the GTU constraints in the info-holarchy are the 

object of the semiotic triad of the info-holarchy.  Finally, the interpretant is the set of 

game rules and strategies employed in the info-holarchy.  This is given by the game G 

and the organization 
 .  The pair ( , )G 
 describes a shorthand pattern for the 

instanciation of the info-holarchy, the means of generating that instanciation.  In this 

manner, a complete semiotic triad ( ( ), , ( , ))t PNLF U GΓ 
 is constructed for an info-

holarchy where ( ) 0tF U = defines the GTU Itȏ differential equation describing the info-

holarchy infodynamics.   

Using semiotic chaining, info-holarchies can be represented by a semiotically 

interconnected series of info- holarchies, to be utilized in a system of semantical 

information structures.  This mapping process constructs information structures 

holistically, where semantics, pragmatics, and contextual issues are components of the 

same mathematical structure – the info-holarchy semiotic triad.  The semiotic chain 

representing an info-holarchy is laid out such that the macroscopic and mesoscopic levels 

depicted respectively by the interpretant, ( , 1)i jI −  on the (i.j-1)
th triad (ith triad on the (j-1)

th 

holonic level) and representamen, ( 1. 1)i jR − −  on the (i-1.j-1)
th triad is isomorphic to the 

microscopic level depicted by the object, ( , )i jO  on the next higher (i,j)th triad. Then the 

macroscopic level interpretant ( 1, 1)i jI − − and the microscopic level object ( 1, )i jO − map 

into ( , )i jR , the mesoscopic level of the (i,j)th triad.  In the info-holarchy structure, this 

chain is glued by the GTU Ito differential equation for microscopic processes, the 
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macroscopic entropic function and the mesoscopic control processes—GTU 

infodynamics defined before.  Each holon and holonic level in an info-holarchy are 

therefore of a certain scale level based on their representative semiotic triad designation.  

The triad in an info-holarchy is the generator of the scale relevance in that holonic level. 

Applications 

Various themes were discussed with respect to leading models of organism 

dynamics.  Dynamic and emergent complex adaptive systems (CAMSs) were used as a 

background for the development of a super-organism metamodel consisting of GTU 

process microdynamics, leading to intermediate thermodynamic mesodynamics and 

Hamiltonian macrodynamics.  This generalizes a quantum mechanical and relativistic 

dynamic for organization.  By the use of causaloids, a time causal model can be 

generalized to a time-less structure, thereby generalizing our concept of evolution in 

organizations, large and small.  Using Topos Theory, an abstract, high level description 

of these systems can be made, leading to further development in the abstract dynamics 

and structures of organizations in a universe.  The next discussion will reveal applications 

for this abstract model, pointing to the specialization to certain natural and human 

organisms.  Two such organisms will be expanded on and specialized from the info-

holarchy metamodel: (a) inference machines, specifically a brain-neural organism, and 

(b) socio-economic organisms, most ostensibly for this study, the business dynamic as 

seen through a specialized holographic performance virtual reality dashboard-cave. 

The informaton model depicting a generalized uncertainty scaffold serves as a 

calculus for constructing organizations of physical presence.  In particular holarchies and 
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more specifically, HMASs, were targeted as the general structures for organisms and 

prototypical adaptive organizations with many interacting agents.  In this chapter we 

investigate applications of the informaton inspired info-holarchy model.  Two 

applications of info-holarchies will be reframed based on the application of this calculus.  

They are; (a) the organization of brain cell structures, including the new found 

importance of brain and spinal cord glial cells known as astrocytes, the so-called other 

90% of our brain, dendritic systems, and the dominantly studied neuronal structures, and 

(b) a holographic representation of a performance dashboard for a general business 

organization.  Passing reference will be made to two other large scale examples of info-

holarchies; (a) financial monetary networks, and (b) cosmological substrates such as 

galactic structures and other organized celestial clusters.  

All these systems have one very broad pattern in common in their respective 

morphological evolution-their network development via holarchical structures, 

relationships, and informational processes.  More generally, it can be seen that almost any 

organization in nature or of human-made origin is a holarchy.  Here, we take a further 

step in positing that these holarchies are, in fact, informational structures subsuming 

physical presence, that is, in our language, they are info-holarchies.  The philosopher-

neuroscientist Chalmers makes the bold claim that all things are conscious in the 

universe, including the collective universe itself, and hence, so are information structures 

through his doctrinal version of panprotopsychism (Chalmers, 2002).  This idea fits into 

our framework for info-holarchies, at least metaphysically. 
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Taxonomies for natural holarchies have been developed by various social and 

biological systems theorists including von Bertalanffy, Laszlo, and Wilber (von 

Bertalanffy, 1950; Laszlo, 2004; Wilber, 1996).  In particular Laszlo develops a holarchy 

of natural organisms and organizations in the universe of discourse (Laszlo, 2004): 

 

 

 

Figure 20. Metaverse holarchy 

  

Here, we have modified this taxonomy to include a higher-order structure that 

represents the mathematical multiverses that are possible in describing any realized 

personal universe.  Personal universes are generalized metaphors for consciousnesses.  

So, a multiverse contains all possible realizations of thoughts and physical systems based 

on information languages of which logics are a kind of.  Transpersonal theorists posit 
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higher-order consciousness in vague terms that resemble unfalsifiable theories of 

existence (Wilber, 1996).  This is done in the guise of a holarchical existence.  

Here, instead the concept of multiverses based on a noncollapsable wave equation 

which itself will be based on generalized uncertainty principles discussed in this 

dissertation is a sub model for our universal holarchy.  This is falsifiable based on the 

application of tests of uncertainty to the structures that arise from such calculus.  In the 

above taxonomy, we adapt a generalization of the concept of Everett’s many-world’s 

interpretation (MWI) of quantum mechanics in which the Schrodinger wave equation for 

the universe does not collapse.  Instead, an Ultimate Ensemble exists in which all 

possible worlds with all possible mathematical descriptions exist as separate realizations 

of separate governing equations (Tegmark, 2007).  One such subset of ensembles comes 

from the usual quantum mechanical wave equation.  The transcendence from one 

multiverse to another and the decision logic that points to the version of the multiuniverse 

one experiences are the points of contention in a comprehensive physical law of 

multiverses and ultimate ensembles.  The commonality between each universe ensemble 

is the concept of information, albeit, with different transmission and interpretational logic 

systems.  A parameterization for such information logics would then be uncertainty via 

GTU and the generated propositional language and logic systems. 

We return to the ultimate constructs of informatons, HMASs.  Adaptive 

multiagent systems that are self-aware in nature are holarchies.  This is so because of the 

fractal nature of holons and how its information flows in a dynamic dance with its 

adaptively formed organization shell.  Holons, by the nature of their existence, learn from 
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within and outside of their artificial physical membranic boundaries.  In their holonic 

organizations, the chain of holons connecting them to hierarchically lower and higher 

holons is itself a subholarchy of the above taxonomy.  In the highest level holon are 

included logical systems, including any human-made Gӧdelian mathematical system.  

This ultimate holon as well as the lowest holon are labeled as self-infinite, that is, they 

possess self-contained infinite subholarchies.  These boundary holons hide the detail of 

unknown ends but nonetheless act as bookmarks for exploratory structure.  In the gist of 

this taxonomy, we put into action info-holarchies which incorporate GTU processes in 

order to add higher informational structure and dynamics to natural and anthropomorphic 

holarchies. 

Inference Machines and Brain-Neural Structures 

We now consider in overview brain cell structures which include the 

microbiology and physiology of neural systems consisting of the main cell neuron or 

soma, the input signal conduits supplied by the dendritic subsystems, the axons, 

supplying the output signal conduits, the synaptic junctures joining these subsystems for 

connectivity, and the novel findings that have established the synergism between the 

abundant neural supporting and dependent glial cells in the brain – the astrocyctes, and 

these neural systems (Koob, 2009, pp. 29-41; Gourine, et al., 2010).  These microsystems 

comprise a vastly complex organization of interacting, adaptive, and independent 

subsystems (split-brain corpus callosum separation) that are the foundation of human 

thought, consciousness, and motor action.  Indeed, their functional and morphological 

characteristics manifest a distinguished and magnificent intelligent HMAS.  To see this 
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we first consider the organization of brain cell types, how information is transmitted 

between them, and finally state a hypothesis about their high-level adaptive structure in 

the language of an info-holarchy. 

 The human brain consists of approximately 2% of the total body weight, yet 

consumes 20% of its total energy.  Of that energy consumption over 80% is devoted to 

the maintenance of neuronal connectivity (Raichle, 2006).  There are approximately 1010 

neurons in the human brain upon optimal maturation after birth.  On average, 20% of 

these neurons die during the human lifespan.  This turnover is as of a result of external 

stimuli, such as environmental pollutants, ingestion of carcinogentic elements, injury, and 

of internal stimuli, such as genetic dispositions to particular structural changes, diseases, 

and maturation of evolutional patterns in the structural formation of these cells and their 

long-term connectivity.  This neuronal-based cellular structure of human brains was 

discovered and developed by Santiago Ramón y Cajal in the early twentieth century 

through animal experimentation and human autopsy (y Cajal, 1899).   

Each neuron has on the order of 103 connections with other neurons through gap 

junctures situated in the dendrites and axons of the neuronal structure.  The average speed 

of an electrical signal in neurons is 100m/s and the average voltage gradient in a neuron 

is 70 mV.  More incredible is the effective bandwidth of human consciousness.  This was 

posited to be approximately 16 b/s even though the stimuli received by the brain from the 

senses is well over 11Gb/s (Helmuth, 1969, p. 69).  The perception-to-sense ratio in 

humans is thus less than 10-7.  It is a form of exformation, the notion that conscious 

information has been compacted into an efficient package through the discarding of 
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redundant or unnecessarily lengthy strings (Nørretranders, 1999, p.124-156).  During the 

experiental and genetic lifespan of a human, these connections are either strengthened or 

weakened, many times to the point of synaptic death or nearly synaptic immortality.  This 

morphogenesis of the topology of the neural space of the human brain via the changing 

set of neurons and their connectivity lattice is called brain plasticity.  These strength 

values are normalized and then compared to universal threshold values in order to 

categorize synaptic mortality.  The Hebbian Theory of connectivity establishes the well 

known dictum that synaptic strength between two neurons is a result of nearly 

simultaneous electrical firing and through a reinforcement law relating presynaptic and 

postsynaptic signals (Hebb, 1949).  In simplified terms, the Hebbian rule is: 

 
i iw x yη∆ =  (6.1) 

which expresses the connection weight gradient or change, 
iw∆ of the i-th dendritic 

presynaptic input to a neuron with its postsynaptic output y, and a learning rate given by 

η .  In terms of a dynamic differential system, this can be restated in the form: 

 
( )

( ) ( )i
i

dw t
x t y t

dt
η=  (6.2) 

Hebbian learning rules are obviously unstable for a neural network because it 

produces unbounded learning gradients and does not provide for possible diverging weak 

connections leading to potential synaptic turnover.  Two modifications to Hebb’s rule - 

the Generalized Hebbian Algorithm (GHA) and the BCM Synaptic Modification, 

normalize synaptic values and account for weak and/or bounded learning gradients, hence 

resulting in stable neural networks.  Moreover, these rules have successfully 
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approximated in-vivo experimental results in some brain subsystems such as the 

hippocampus and neocortex.  Further enhancements to these rules in the unsupervised 

learning neural network field of study have been developed to further refine learning 

rates and computational efficiency towards the optimal estimation of system parameters 

in training and generalization problems.  Of these the two most ostensible belong to the 

class of self-organizing algorithms or maps (SOM) referred to as Kohonen maps and 

unsupervised versions of Kernel machines (Baudat &Anour, 2001) (Hofman, Schӧlkopf, 

& Smola, 2008).  Kohonen’s SOMs endeavor to conserve the topological relationships 

between neurons, i.e., topologically close neurons tend to correlate better with each other.  

For completeness we give these modified Hebbian rules, which are generalized to handle 

multiple outputs.  The GHA is given by: 

 
1

j

ij j i ik k

k

w y x w yη
=

 
∆ = − 

 
∑  (6.3) 

where ijw is the connection weight between the i-th presynaptic input and the j-th 

postsynaptic output, 
ix is the i-th input neuron signal and jy is the j-th output signal 

(Sanger, 1989).  The BCM rule is given by: 

 ( )
( )

( ) ( ) ( )j

j j

dw t
c t c t w t

dt
ϕ ε= −  (6.4) 

where for time t, for the j-th synaptic connection, ( )jw t is the weight and ( )jc t is the 

current, and ( )c t is the weighted presynaptic vector signal, ε is the time constant of 

uniform decay for all synapses and ϕ is a postsynaptic activation function which has the 

form that it changes sign at a given threshold, 
wθ (Bienenstock, Cooper, and Munro, 
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1982).  The BCM learning rule is a dynamic analogue rule.  The Kohonen learning rule is 

given by: 

 ( )i i ij iw N D x wη∆ = �  (6.5) 

where 
iw is a vector of weights that connect the inputs to the i-th output, ijN is a node 

neighborhood (similarity) function such that 1iiN = and 0,ijN → as ( )i jD r r → ∞� , 
ir  is 

the i-th output node, D is a suitable metric or more generally, a divergence measure in the 

space of node vector values, and jx has been chosen as the winning node, i.e., 

,  j iw x w x i⋅ ≤ ⋅ ∀ for a randomly chosen beginning input vector x.  The learning rate, 
iη is 

now dynamic.   

The most interesting form of learning because of its generalizability and 

mathematical power is the kernel machine.  The kernel machine employs a kernel method 

which is a device that separates the output features (output node values) of a neural 

network in a different space, the kernel space, in such as way that more distinguishability 

is accomplished, hence providing better separability.  This learning algorithm is a higher 

level generalization of the other methods and can represent other types of network or 

input-output systems.  The details of such method follow.  The kernel machine 

approximates a function ( )dy f u= , where ,N
u y∈ ∈R R using a training dataset of 

dimension P, { }
1

,
P

k

k d k
u y

=
.  The input vectors are then projected into a higher dimensional 

feature (node value) space, by a set of nonlinear functions, ( ) : N M
uϕ →R R .  Finally, the 

output is obtained as the linear combination: 
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1

( ) ( ) ( )
M

T

i i

i

y u w u b w u bϕ ϕ
=

= + = +∑  (6.6) 

where w is the usual weight vector relating input to output nodes and b is a bias term 

selected for the purposes of suitable robust approximation and error correction in a 

statistical manifold.  Now form a kernel operator, K as the inner product: 

 ( ) ( )( , ) T

k i k iK u u u uϕ ϕ=  (6.7) 

Map expression (6.6) in terms of this operator: 

 
1
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T

k k

k

y u K u u b K bα α
=

= + = +∑  (6.8) 

where K is the appropriate matrix representation of the kernel operator, K (Horváth, 

2006).  The new weights are designed by the vectorα .  The new space where the output 

feature nodes are mapped has dimension P and is called the kernel space.  The modus 

operandi for these consecutive mappings of the output nodes is that the sepability of the 

features of the output nodes becomes easier because a linear line can now distinguish or 

separate them.  Additionally, a device called the kernel trick can now be applied to the 

solutions of (6.8) in the kernel space in which the solutions are built without direct 

knowledge of the original feature output node space, in which in turn, it may be difficult 

to separate features of the output nodes.  Kernels can be used that generalize all the 

aforementioned learning rules and extend them to other more powerful mathematical and 

computational ones.  

When a neural network contains many layers of neuronal subsystems, a learning 

rule applied to it is considered “deep learning”.  Otherwise, for relatively small numbers 
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of layers, usually less than three, a learning rule applied is considered “shallow learning”.  

Most practically applied neural network algorithms utilize three or fewer layers and 

hence are considered shallow learning.  Learning rules are essentially rules for neuronal 

evolution.  They dictate the pattern of neuron lifecycles.  Important to this is the 

dimension of the neural network since a vast array of such can overwhelm computational 

resources, including the wetware of the human brain.  This is called the “curse of 

dimensionality” and is no new problem for estimation algorithms.  Related to this is the 

effective dimension of such algorithms.  This can be generalized to the wetware of the 

human brain and other biologically inspired computational machines.  The effective 

dimension of an algorithm is a measure of the computational complexity of the algorithm 

in terms of the minimum dimension of the input data needed to effectively accomplish 

the task of learning such as in estimation and classification.  Recently, the effective 

dimension of kernel machines was shown to be an indicator of their convergence rate in 

solving problems of identification (Zhang, 2003).  Projecting this to human brains, a 

mathematical construct can be made to reduce the effective resources needed, i.e., an 

efficient resource management of wetware.  

Looking more closely at the synaptic junctures, the synaptic strength is more akin 

to a function (usually a sigmoidal) of the mathematical summation of contributing 

electrical charges from denritic inputs to that neuron.  A threshold function is then 

applied to this function resulting in an output signal strength value.  These electrical 

pulses are binary signals.  These signals are in turn created by ionic gradients normally 

manifested through wave transmissions of calcium or potassium ions.  These waves also 
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cause the transmission of neurotransmitters such as serotinon, dopamine, and epinephrine 

which facilitate these gradients.  Analogue signals are sent from mechanical stimuli such 

as muscle manipulations and are in turn converted to digital action potentials by neuronal 

subsystems.  These action potentials are summed according to the aggregate of similar 

action potentials.  

Brain cells, as connectivist microsystems of the central nervous system (CNS) are 

sensorial in that they receive coded information via electrical pulses from ionic gradients.  

Shannonian doctrine shows that these analogue information potentials are reliably 

represented by their binary coded representations given adequate channel width and 

strength.  This is the computational basis for most artificial neural network dynamics. 

 Connections may be inhibited or excited (strengthen) depending on the resultant 

potential.  Additionally each contributing input to a neuron may be weighted before 

summed.  As an example consider the following single neuron environment.  Neuron 

j

in in a brain subsystem, 
iB receives input signals from m other neurons, labeled as the 

neuron subset { }
1,..., 1, 1,...

k

i k j j m
n

= − +
.  The action contribution from neuron k

in is given by 

k

iα and its respective weight is k

iw .  Then the output action of neuron j

in is given 

by
1

m
k k

i i i

k
k j

g w α
=
≠

 
 
  
 

∑ where
ig is the transfer or threshold function.  More generally, this output 

action may be subdivided into all the output connections emanating from neuron j

in , as 
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an assignment to its l-th output, 
1

m
k k

l i i i

k
k j

f g w α
=
≠

  
  
      

∑ .  Artificial neural networks are 

usually simplified to consist of distinct layers of neurons that successively receive inputs 

from the preceeding layer and produce output to the following one.  The human brain has 

vastly more complicated connectionist subsystems with various nonlinear and 

topologically foliated loops possible between subsystems of neurons.  Neural subsystems 

may also involve feedback mechanisms in which a subset of output signals are feed back 

into the source neuron or to preceeding contributor neurons, emulating a control system. 

 Human brains are a subset of the category of learning machines in which 

recurrent systems, such as neural networks are statistical operators that produce iterated 

estimators of a target parameter(s) given training data as perceived through experiental 

observations and sensory inputs.  In this way, artificial neural networks are caricatures of 

the human brain dynamic.  Connections in the human brain are more highly complicated, 

signals involve the movement of chemical molecular systems, i.e., neurotransmitters and 

ionic charges, and analogue information is more diverse and exquisitely partitioned to 

specialized subsystems.  Nonetheless, these dynamics are approximated using differential 

systems that involve transmembrane potentials.  As an example of such models, neuronal 

dynamics are often approximated as integrate-and-fire mechanisms.  These membrane 

potentials are modeled by the differential equation: 

 0

( )
( ) ( )

n n syn

dV t
V t V R I t

dt
τ = − + +  (6.9) 
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where 
nτ is a membrane time constant, 

nR the membrane resistance, synI the total synaptic 

current, and ( )V t the potential at time t (Tuckwell, 1988).  n
n

n

C
R

τ
= denotes the 

capacitance.  The potential, 
mV is reset to the resting value of 

d
µ for a refractory period of 

rt and a spike is sent when the potential exceeds some threshold value,Vα  . 

 Dendrites, on the other hand, while supplying the conduits for input signals to a 

neuron from other neurons, resemble cylindrically-shaped pipes with numerous dendrite 

spines protruding as dendrite necks from the sides, each culminating in dendrite spine 

heads.  The spine head makes junction with the presynaptic area of the axon of an input 

neuron.  The synaptic gap is approximately 1/100 micron wide.  The surface of the spine 

head contains a dense region of electrons, called a postsynaptic density.  The main cargo 

at this junction is glutamate receptors (GluRs).  When the input neuron’s axon releases a 

neurontransmitter, it binds to the postsynaptic density of the spine head that expresses 

GluRs.  The GluRs are held to the spine head membranes by cytoskeleton elements.  

Cadherin, a calcium synergism partner, is responsible for the inter-neural juncture “glue”.   

GluRs pass signals to the cytosol of the dendrite for further propagation to the neuron 

cell.  This is further mediated by protein kinases.  The shapes and sizes of dendrites are 

posited to be correlated with learning strength, i.e., large, wide spine heads mean stronger 

connections. 

 Cabling or the Neuronal cable theory model is an accurate method to model the 

flow of current in consecutive portions of dendrites.  The model obtains its name from the 

cabling mechanism that it emulates connecting one section of a dendrite to another.  It 
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utilizes a differential system to describe the flow of current in passive uniform cylindrical 

neural pathways.  Linear neuronal cable theory starts with the following differential 

system relating the flow of current in dendritic cylinders with perimeter P, cross-sectional 

area A, constant specific capacitance , mC  constant membrane conductance ,
mg constant 

axial conductance 
ag , and ( ),V X T  the difference in potential at ( ),X T from its 

equilibrium value: 

 ( )
2

2

1
,  0,

V V J
V X L

T X gτ
∂ ∂

+ = − ∈
∂ ∂

 (6.10) 

where 
x

X
λ

=  is the electrotonic distance, x is regular distance,  
t

T
τ

= is nondimensional 

time, and J is the nondimensional density of exogenous current.  Additionally, 

 ,       ,         a m
m a

m m

Ag C
g g g AP

Pg g
λ τ= = =  (6.11) 

where g is the conductance.  These circuits are myeliated which means that they are 

insulated by membranes.  Branching of these cable segments occurs in dendritic 

development.  An extension of this cable differential system for branching and hence a 

way of defining subunits of dendrites for the purposes of accurately modeling current in 

nerve cells has been given by Lindsey, Ogden, and Rosenberg (2001).  Nonlinearities in 

the model can be expressed approximately as: 
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where D is a differential system that describes the evolution of the triplet ( , , )m h n .   

The transmission of glutamate receptors, in the case of excitatory neuro 

transmission involves the opening of transmembrane ion channels through glutamate 

binding.  It has been shown that these receptors are crystalline in organization and 

symmetry with respect to two well known receptors crucial to all transmission of 

chemical information between membranes and hence to all brain cell communication 

(Sobolevsky, Rosconi, & Gouaux, 2009).  This is where the diffusion of 

neurotransmitters occurs and hence the potential for charge gradients and of signal 

signature into the neuron cell. 

 The neuronal system is part of a holarchical system of cellular, subcellular, 

suborgan, and super-organ structures based on these transmembrane dynamics, the 

resulting evolutionarily formed subsystems in the brain, such as the hippocampus and 

neocortex, and proceeding upward in the dependency chain, the noosphere of collective 

human and extra-human thought and activity.  Quantum systems have been hypothesized 

to be the backbone of consciousness and human activity through the actions of 

subcellular organizations named neuro microtubules and known as the Orch OR 

(Orchestrated Objective Reduction) theory of consciousness (Hameroff & Penrose, 

1996).  Microtubules are components of two-sided (tubulin) protein polymer 
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protofilaments that form as an asymmetric helix that are in turn, components in the space-

filling cytoskeleton for all cells.  These proteins generally have hydrophobic pockets 

where π electrons reside.  These electrons do not bond with other electrons in their outer 

shell.   

The tubulin proteins have hydrophobic pockets that are approximately within two 

nanometers of each other.  Because of this proximity Hameroff and Penrose have 

postulated that quantum-level manipulations, specifically quantum entanglement, are 

manifested in these microtubules in brain cells and hence propagate information faster 

than would be possible from chemically induced information transmission.  More 

specifically, Einstein-Bose like condensates develop from the chaining of these 

entanglements across synaptic and gap junctures.  This produces a macroscopic quantum 

behavior across regions of the brain.  Hence, they posit that consciousness, at a higher 

level than physical stimuli is the result of the microtubule collective activity.  Penrose 

cites Godelian incompleteness of a mathematical system that can be represented purely 

within a Planck-scale region (Penrose, 1989, p. 457).  Outside this region the quanta 

collapse and classical commnunication ensues.  So, within microtubule structures, 

Godelian incompleteness manifests the subjectivity of consciousness within the Planck 

region and is not dependent on the topo-geometric constraints of general relativity.  

Nonetheless human anticipatory stimuli occurs that proceeds actual physical stimuli, as in 

the case of the human brain anticipating one tickling oneself and hence not losing control 

of laughter or the recorded pre-physical anticipation of stimuli before proceding with the 

thought of carrying through with an action. 
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 Orch OR theory is not without its strong critics.  Quantum decoherence occurring 

in the brain would spoil any such quantum entanglement schema.  The distances for 

neuronal microtubule entanglement and coherence times speculated by Hameroff do not 

agree with experimental measurements.  Hameroff and Penrose cite the experimental 

results from the detection of gamma synchronization in the brain as the product of Orch 

OR.  Moreover, Hameroff claims that these microtubules have an A-lattice structure that 

facilitates quantum manipulation, specifically topological quantum error correction.  

These results have not been shown and further have been disproved by other results that 

show different structures (B-lattice and a seam) (Kikkawa & Metlagel, 2006).  Lastly, the 

estimate of number of tubulin (dimers) in a neuron given by Hameroff was incorrectly 

calculated, leading to an incorrect number of neurons that would be entangled for 

conscious thought.  Instead, on the order of 15 neurons was calculated for a time period 

of 25ms as required by Orch OR (Georgiev, 2009). 

 These refutations of the Orch OR theory do not rule out any quantum phenomena 

of neuronal and consciousness activity.  In fact, the most stringent criticisms point to 

respecifications of the theory and not refutations.  By specifying different 

parameterizations for the microtubules and quantum coherence limitations, the potential 

credibility of the theory endures (Georgiev, Papaioanou, & Glazebrook, 2004).  It 

remains to construct a more plausible metamodel of microneural systems before 

attempting to link consciousness to such constructs.  

Nonetheless, it appears that mesoscopic neural subsystems act in a 

thermodynamic way.  Microscopic quantum behavior is trivially true since ionic activity, 
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which carries nonneglibile quantum effects, is at the heart of neural communications.  

However, quantum entanglement schema will be more difficult to experimentally display.  

Large objects lose quantum coherence and hence their quantum entanglement properties.  

The size boundary of where this decoherence happens in an object is not known.   

Notwithstanding the unknown size limit of quantum systems in nature, recent 

experiments have shown that mesoscopic systems consisting of larger ionic structures 

that mimick mechanical oscillators exhibit quantum entanglement behavior (Jost, 2009).  

By constructing holarchies of cellular and subcellular holonic structures from these 

distinguished neuronal subsystems with their accompanying quantum ionic 

communciation, a brain info-holarchy is proposed.  Information transfer within and 

between these structures has been shown to be by transmembrane activity, ultimately 

mandated by ionic flow channels.  Notwithstanding specific criticisms of Orch OR theory 

and its quantum entanglement schema for microtubule activity, the info-holarchy 

generalizes the brain structure.  Partial quantum entanglement as previously reviewed and 

discussed in an info-holarchy serve as general measures of information complexity in the 

specific brain info-holarchy.  

In a curious application of Zeno’s paradox to quantum decoherence, continuous 

measurements of coupled quantum systems theoretically lead to perpetual coherence.  

Brains as quantum systems can be in a trapped coherent brain state leading to targeted 

actions and thus escaping the ambiguous smear of clouds of probabilistic quantum states 

and nonaction (Stapp, 2009, pp. 225-226) .  This quantum version of the Zeno paradox is 

known as the quantum Zeno effect (QZE) (Misra & Sudarshan, 1977).  Discrete Turing 
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machines processing in discrete, finite steps are immune from the QZE because their 

measurements in the shape of computations are not continuous.  Generalized brains that 

approach continuous measurement capability are therefore asymptotically quantum 

mechanical and can terminate computations leading to an eventual system action or 

reaction.  Info-holarchies with this asymptotic measurement apparatus can therefore 

perform actionable computations, leading to the simulation of actionable brain states, i.e., 

decisiveness.  Even in discrete Turing machines, for large numbers of computations, an 

asymptotic QZE may approximate a large enough period of coherence, on the scale of the 

experimentally validated nanosecond of “thought-fix”, that an action is manifested.  

This may be the evolutional mechanism for thought and information processing in 

brains simulated directly in quantum and super-quantum info-holarchies.  Suppose that 

particular stimuli have conditioned a group of neural subsystems so that the asymptotic 

QZE has manifested a fixed thought-state in that federatation of subsystems for a period 

of quantum-level time.  This thought-state is partial for the whole brain because it is 

manifested only in a subsystem of the brain.  That thought-state is in direct competition 

with other thought-states resident in other subsystem federations of the brain.  The neo-

Darwinian process is then one in which these thought-states are compared by a metric 

that measures the effectiveness and size of these subsystems, i.e., the complexity of the 

subsystems possessing the rival thought-states.   

Federations of thought-states are formed by cooperation based on similarity of 

thought-states.  Let { }
1

N

i i
n

=
be the set of neural subsystems of a brain info-holarchy.  These 

neural subsystems are holons in the info-holarchy, not particularly hierarchically ordered.  
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Corresponding to a neural subsystem, k
n  is a thought-state, ( )ks n .  Federated super-

systems are then formed by combining several neural subsystems, 

{ }
1

, 1, 2,...,
j

i

M

k
i

n j M
=

= where M is the number of federated systems formed and jM is the 

number of neural subsystems in the jth federated system based on the proximity of their 

respective thought-states, { }( )
ik

s n , that is, ( ( ), ( ))
i jk k kD s n s n ε< for some threshold, 

0kε > and similarity measure or divergence D acting on the 2-product space of thought-

states.   

These groups of thought-states form equivalence classes of thought-states which 

then represent the template for the thought-state of that federated subsystem.  Hence, a 

federated thought-state is the development of similar thought-states.  The federated 

thought-state with the largest evolutional fitness measure is one which possesses the 

largest information complexity measure (see Figure 27).  The prior reviewed complexity 

measures for info-holarchies are considered as candidates for this thought-state metric.  

This is the evolutional mechanism of the brain info-holarchy.  Note that these neural 

subsystems most assuredly share overlapping physical regions, but the thought-states 

correspond to unique neural subsystems. 
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Figure 21. Brain info-holarchy and thought-states 

 

Causal rules such as Bayesian quantum probabilities may be superimposed on the 

info-holarchy network structure to produce a quantum causal network over the holon 

infrastructure (Laskey, 2006).  In this way any previous inference based on the formation 

of evolutionary prior distributions on past events that have been sensed and interpreted by 

the brain info-holarchy can be blended in.  To generalize these quantum causal rules, one 

can impose GTU rules onto the info-holarchy.  General fuzzy probability can then be 

utilized in the brain info-holarchy inference machine. 

According to recent research conducted by Rauchle, Fox, and Zhang, the 

subsystem of the brain labeled the Default Mode Network (DMN) is the conductor of 

how other specific subsystems of the brain receive signals.  This proposal emanated from 

experimental results that showed how brain activity shifts into a supervisory activity 

requiring an elevated level of energy consumption when resting or distracted, 
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counterintuitive to classical neuroscience theories (Fox & Raichle, 2007).  This capacity 

to transform brain circuitry into a higher energy state when seemingly at rest was posited 

as a sort of dark energy for the brain, synonymous to the physical postulate that most of 

the universe’s energy is unknown, i.e., dark energy (Zhang & Raichle, 2010).  The DMN 

is thus a candidate for a HEAD holon in a brain info-holarchy. 

Brain systems are open in the sense that they are part of a larger system that 

surrounds them, the sources of stimuli for their sensorium.  Brains exchange energy and 

entropy with their environments and hence information as well.  When modeling the 

brain as a system, its externalities must be included.  The extent of this externality is 

potentially great and Kaufmann has labeled this region as the “adjacent possible” of a 

system (Kaufmann, 2000, p. 146-148).  In this discussion, the adjacent possible of a 

system is the information hull of an object, that region in which all potential information 

can be physically and meaningfully exchanged with the object.  GR posits this as the 

event horizon for a particle, while in QM super-entanglement this region may potentially 

be the universe itself.  The compromise between these two information paradigms lies in 

the information structure of QG.  In multiverse renditions of QG, this region is extended 

to a super-dimensioned space, given that information fields or informatons can be 

exchanged between the possible universes for that object around a generalized location.  

Spacetime no longer is sufficient  

In a review of empirical neuronal dynamics studies of large scale – mesoscopic 

fMRI patterns and small scale—microscopic network avalanches of small neural 

subsystems, Chialvo (2010) posits that brain dynamics are universally described by 
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critical points of a second-order phase transition, i.e., at-the-edge (of chaotic bifurcations) 

near criticality; emergent behavior manifested by systems characterized by nonlinearity at 

the individual entity level, large ensembles of entities connected by variously scaled 

communication mechanisms or field effects, and external stimuli from a surrounding 

environment—boundary transmissions. Thre is also the matter of evolving evolvability 

that addresses higher order adaptive behavior that changes strategies in organisms and 

organizations—leading to various forms of adaptive learning strategies.  Info-holarchies, 

by utilizing generalized evolution operators in their processes, embrace higher-order 

evolutionary operators (i.e., operators on operators), mimicking evolvable evolution.   

Phase transitions, as mentioned above for brain dynamics, are modeled by the 

dynamics of thermodynamic open systems.  Open systems circumvent the second law of 

thermodynamics – a closed system tends to increase entropy or disorder, ceteris paribus.  

More generally, biological systems are thermodynamically open.  In open systems it is 

important to consider the differential flow of energy since it may increase or decrease.  

Free-energy is an information-theoretic measure of the difference between the energy and 

entropy of a system.  It is therefore a measure of the potential for surprise or for 

unexpected energy gradients.  In brain systems free-energy gives a global indication of 

the amount of work put into inferring or more succinctly, thinking.  A promising global 

model for the structural dynamics of brain activity is based on the free-energy principle 

of statistical physics (Friston, 2009; Friston & Stephan, 2007).  Friston’s model is based 

on a hierarchical or empirical Bayes model for prior information on inputs to the senses 

received in the brain.  The brain system is modeled as an open system connected to its 
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external environment.  It minimizes its free-energy in order to minimize the surprise from 

its input data sensed given a model of what the senses generated.  Free energy is simply 

the prediction error of the brain’s model given the training sets of inputs collected.  

Minimizing free-energy is equivalent to minimizing phase transitions that would 

ostensibly alter structure, a Darwinian survival.  In detail, free energy is expressed as the 

difference between energy and entropy, 

 

( , ) energy - entropy ln ( , | ) ln ( )

ln ( ( ) | , ) ( ( ) ( ))

( ( , ) ( | )) ln ( | )

q q

q
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µ

= = − +

= − +
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 (6.13) 

Here p is the distribution that generates sensory samples, I is the cause of the sensorial 

data, y is the sensory input, m is the generative brain model, q the density of the causes 

and µ is its vector parameter, D is a divergence measure between probability distributions 

and α is an action.  Sensations are given by the model, 

 ( , )y g I zα= +  (6.14) 

External states are given by the differential, 

 ( , )I f I wα= +ɺ  (6.15) 

Two minimizations are performed, one to estimate an action,α that will minimize a bound 

on surprise by maximizing the accuracy, 

 arg max ( ( ) | , )
q

p y I m
α

α α=  (6.16) 

The other estimates the perception,µ that minimizes the bound on free-energy, 

 arg min ( , )F y
µ

µ µ=  (6.17) 
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This Bayes variational optimization model under the free-energy principle is subsumed 

by a specialization of the GTU Itô stochastics of the informaton dynamic model with a 

macroscopic functional entropy measure and divergence. 

 As far as computational devices are concerned, neurons are specializations of 

human cells which have been investigated to be fully functioning wetware computational 

units (Bray, 2009).  This is the basis for bio-molecular computation.  There are 

approximately fifty trillion cells in the human body.  Proteins, in particular, are the 

workhorse computational switch devices, as enzymes are the information conduits - the 

prototypical I/O units.  More fundamentally, an information flow chain is present from 

DNA to messenger RNA – enzyme RNA polymerase, which in turn builds protein 

machines from chains of amino acids.  Biochemical reactions power this computer.  

However, their action is dictated by ionic flow and so, once again, quantum effects are 

potentially the catalysis.   

The helical model of DNA, is, of course, comprised of the 4-set nucleotides, 

( ), , ,T C G A forming the possible pairs, ,G C A T− − . RNA is formed from the 4-set, 

( , , , )U C G A into the pairs, ,A U G C− − .  Proteins are build from a 20-set of amino acids.  

Each cell is comprised of an outer membrane (lipids and proteins) which encapsulates the 

mitochodrian of the cell.  The mitochondrian interact bio-chemically with its surrounding 

helper chemicals and catalysts to compute the next action in the cell’s motality, i.e., it 

determines the strategy for the cell’s action space.  Each cell then comprises a special 

info-holarchy that connects to other cells in functional harmony and information 

exchange via electro-chemical exchanges - distinct information transfers.  The holarchy 
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of connections in a functional cell group, that is, ones that have distinguishable unitary 

tasks in the body, are chaotic and nonlinear, oftentimes, distant in geometry, but proximal 

in language connectivity - they are self-aware and group aware.  In lower holonic levels, 

that of the genetic circuitry of DNA and RNA, holons exist as DNA and RNA pairings 

and their interconnectivity in determining chromosomal signatures. Smaller 

computational switches than those of proteins exist at this level – repressor and activator 

binders (transcription factors) to DNA.  This is the way of holons and in particular, info-

holarchies with generalized uncertainty processes.  Info-holarchies also display morphing 

capabilities, as posited earlier in this chapter – they reproduce according to an optimal 

strategy of survival.  Cells accomplish this feat when there is chemical stasis. 

Because microneural activity and more ostensibly, cellular morphology and 

motility are dictated by chained quantum effects and evolutionary uncertainty (random 

selection and mutation), info-holarchic processes generalize their information engines – 

biochemical and ionic flow.  Info-holarchies are the structures that may show that 

Kaufmann’s hypothesis that the biosphere – all biological organization, is the biological 

instantiation of a higher evolutionary law of the universe - self-organization into complex 

adaptive systems arising from nonlinear dynamics (Kaufmann, 1995, 2000).  This study 

hypothesizes that one version of this proposed universal law is in the form of the 

informaton, info-holarchies, and the generalized info-dynamics of GTU-based processes. 

Deterministic computation—manifested by hardware configurations relying on 

solid-state or optical devices are not inference machines or even brains. They lack the 

awareness of true neuronal structures and the vast arrays of processors.  Additionally, 
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processing software cannot, on its own, mimick these structures.  There must be a 

synergy of hardware awareness of its environment—the ability to adapt to its 

computational environment, and software management of these stimuli and reaction.   

In a recent attempt to address these issues DARPA, Boston University, and HP 

Labs have merged a new kind of circuitry component, the memristor, with an intelligent 

adaptive software module that attaches to these components—the MoNETA, Modular 

Neural Exploring Traveling Agent (Versace & Chandler, 2010).  These components are 

combinations of memory-processor-software chips with brain-like processing, i.e., they 

are aware of their environments (stimuli from other chips), react by forming survival 

strategies, and execute their plans.  Biological wetware is emulated by an architecture 

that locally combines processor, memory, and instructions, rendering cache-memory type 

architectures moot—so called neuromorphic computation, the antithesis of a von 

Neumann machine.  The motive is that the closeness and connectivity of computing and 

reasoning components dictate a better and more realistic architecture to compete with the 

biological brain.   

For MoNETA-like processors to simulate info-holarchies, additional reasoning 

components must be built into the software that emulate lattice cellular automaton for 

information bit exchange, as well as the macrodynamics addressed by Itô processes, and, 

in the large and small organizational prowess—quantum-gravity and causaloid logic.  

Memristors in these configurations would then be aware, not only of their neighboring 

memristors, but of their subholarchies of memristors, in a dance of lattice physics. 
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Businesses and Multisensorial Holographic Performance Dashboard-Caves 

New-paradigm organizations and businesses, in particular, are oftentimes näively 

viewed as complex adaptive systems and networks of actor nodes, i.e. adaptive social 

networks (Dooley, 1997).  As autonomous and autopoietic entities, businesses themselves 

should also be considered as complex actors in a nested socio-economic CAS, instead of 

emanating solely from externalities and individual nodes from within (King, Felin, & 

Whitten, 2010).  This introspective and holistic self-similarity is reminiscent of a natural 

form of an info-holarchy considering the emergent information flows involved.  From the 

previous treatment of individual brains and inference machines as info-holarchies, 

businesses add holonic layers of complexity to brain structures. In this study they are 

presented as info-holarchies of brain-like entities.  Inorganic resources that are not 

computational devices remain considered as inference machines because they consist of 

networks of informatons (particle lattices) in their respective structure.   

Organization theories study the dynamics of such groups and endeavor to model 

their collective behaviors using variables such as resources, communication bandwidths 

and network connectivity, diversity and culture, historical context, psychological factors, 

and externalities.  Some computational models for organization dynamics involve 

simulation using these factors as seed generators.  Nonetheless, there are no unified 

principles for organization evolution using computational paradigms or agent-based 

simulation (Ashworth & Carley, 2008).  Organization theories consist of a Motley crew 

of classical optimization paradigms and attribute tracking.  The measure of wholeness of 

the organization remains tied to algorithms that are prefaced by sequential analysis of 
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groups of factors.  Consider instead, info-holarchies as a natural means of representing 

businesses in order to holistically measure their evolution.   

Diverting from this argument for viewing organizations as types of info-

holarchies, the concept of organization must be revisited.  Anthropomorphic 

organizations are described generically in the organization science literature as groups of 

individuals with resources that have common goals, strategies, and visions to aspire to 

and reach via certain inputs and translated from certain outputs. This is an overly broad 

and simplistic systems view of organizations.  Organizations may be haphazard and may 

involve many conflicting goals, strategies, visions, and behaviors.  Organizations have 

feedback mechanisms, sometimes negative, sometimes positive, and often times mixed 

and adaptive.  Collective measures of these aspects and properties of organizations are 

oftentimes the only accessible components, i.e., descriptions of ensemble behaviors.  This 

is exactly what field theories do for physical components of matter and energy.  Hence, 

modern descriptions of anthropomorphic organizations are thermodynamic in nature.  

This is generic to general organization.   

Despite these descriptions of organization, there is no unified version of how 

organizations are born, form, and evolve.  This is certainly the case in terms of physical 

first principles.  In this study information in the framework developed for informatons 

and info-holarchies is proposed as the calculus for organization evolution.  Info-

holarchies vacate all of spacetime as ensembles of informatons and can transmit all forms 

of information and hence of energy and mass.  This transmission includes that of 
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knowledge, the arranged semantic version of information for inference machines and 

humans in particular.   

Business organizations share in these properties, but are extended to particular 

strategies, visions, and goals.  The ultimate goal of for-profit businesses is a positive and 

sustainable net monetary output.  However, nonprofit organizations disguise this premise.  

Examples of nonprofits with the same motives are political, religious, and information-

knowledge dissemination-based organizations, i. e., think tank organizations.  Their 

realistic strategy for long-term sustainability is positive monetary or positive monetary 

feedback influences, i.e., they survive as long as their profited categories of advocates 

prosper.  In the post-modern environment, themes such as globality, diverse 

sustainability, and community are systematically changing these motives (Engdahl, 

2005).  It is no longer clearly profitable or sustainable to wildly pollute the environment 

or bully a community into deals. 

Businesses, as part of group nodes that include their suppliers, partners, and 

competitors in the collaborative web network of the Internet, are special kinds of socio-

economic groups, subsocieties per se, are self-organized and emergent as the product and 

manifestation of change.  Kelly (2010) has proposed the term technium to indicate the 

near autopoetic nature of technological innovations and devices—the ability of artificially 

intelligent devices to self-organize and self-construct an evolved version of themselves, a 

version of vonNeumann machines.  This manifest coevolution of human agents and their 

intelligent cohabitors—computational devices was first coined as the techno-social 

sphere by Winner (1977).   
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Businesses as human social organisms exhibit complexity and chaosity through 

three properties: (1) containment, (2) transforming exchanges, and (3) significant 

differences (Olsen & Eoyang, 2001).  This is true of any organism that is auto-poietic. 

Containment is the ability to define discernable boundaries for agent groups.  

Transforming exchanges are simply multidimensional information flows between agents. 

Finally, significant differences are the manifestation of differentiation between groups, 

the clear delineation of personnel and group types and expertises.  The dynamics of these 

human social organisms have been posited to work almost exclusively through the 

appearance of strange attractors within its complexity schema (Lewin, 1999; Marion, 

1999).  However, strange attractors can be viewed as a particular information exchange 

between groups of agents in an info-holarchy.  Certain strange attractor classes can be 

generated by the logistic growth function.  More generally, a difference equation may be 

used: 

 1 ( )t t tx f x+ =  (6.18) 

where 
tx represents some characteristic of the structure of an info-holarchy organism at 

time t, e. g., the network structure of the organism as an abstract time graph.  The 

evolutional transfer functor 
tf  can then abstractly generate the information entanglement 

(transfer exchange) between informatons of the organism at time t.  It can also represent 

the information field for the organization informaton agents.  Most strange attractors are 

not generated by such deterministic evolutional functor relations even though these 

generate strange attractors.  The form of 
tf may be probabilistic or in the case of info-

holarchies, a Zadeh GTU-causaloid process.  Strange attractors have a multifractal 
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structure - self-similarity as described by a space filling curve with fractal dimension as 

in (3.156) for the more general Rényi dimension involving probabilities of intersecting 

regions of the chaos’ phase space.  According to this strange attractor hypothesis for 

organizations, no real action or metamorphosis occurs without them, i.e., periodic cycles 

and fixed point attractors are status quo states. 

To this end, business organizations are oversimplified by measurement through 

the visualization of certain perceived nonadaptive causal performance metrics – classical 

business analytics.  Every organization, in particular, a business, is a class of inference 

machine in the sense that it has an induced information flow and adapts to its 

environment through sensorial data, the business metric spectrum in this case.  Recently a 

brand of visualization tool labeled the performance dashboard has become a popular 

means of viewing nearly or approximated real-time performance metrics of an 

organization.  These dashboards are normally manifested through a web portal 

application that summarizes various detailed information clusters relating the working of 

the organization to quantifiable measurements such as key performance indicators 

(KPIs), linkage to strategies, and scorecard metrics.  Traditional performance dashboards 

are near real-time business intelligence systems in that these measurements are based on 

the ongoing flow of various business information and their objective measurements 

(Eckerson, 2006, p. 4-5).  These dashboards mainly consist of various graphs of 

performance parameters mapped against KPIs.  They rely heavily on conventional 

statistical tools such as regression analysis, time series, discriminate analysis, 

comparative tables, and histographs. 
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Business dashboard content is based on roles, i.e., the visual is dependent on the 

role and task spectrum of the user and so depicts information that is tightly correlated and 

pertinent to the user’s workflow.  Executive summaries in dashboards are tailored for 

high level decision-makers of organization, while more detailed analysis of certain 

workflows can be informative for mid-level management and frontline employees.  What 

these role-based dashboards have in common are the business analytics they introduce to 

their user’s toolkit.  By delivering content specificity to members of an organization, 

pervasive dashboards portend to increase organizational autonomy and BI in real-time at 

most role levels (Lock, 2010).  These analytics endeavor to meld together the stratagem 

spectrum of the business to measurements of performance, the KPIs they expose.  

Eckerson (2006) maps the maturation stages of a business utilizing a Business 

Intelligence (BI) Maturity Model and manifested by the anthropomorphic scale: (a) 

prenatal, (b) infant, (c) child, (d) teenager, (e) adult, and (f) sage.  This maturation 

evolution is reflected by the use of business reports that converge to the eventual 

development and optimal utilization of dashboards (Eckerson, 2006, p. 90-100).  

Dashboards are therefore thought of as more complete and advanced forms of business 

communication that help connect decision makers to real-time movement of business 

performance. 

These depictions of business dashboards are the general sentiments of dashboard 

developers and business analysts.  Nonetheless, they lack empirical evidence for 

effectiveness.  The appearance of technological prowess in the form of business analytics 

leads business leaders to believe in a “halo effect”, that is, a sense of false security in the 
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predictive powers of these tools based on correlational and predictive performance 

measurements (Rosenzweig, 2007, pp. 65-82).  Analytics are not globally adaptive, do 

not clearly differentiate between correlation and causality, and are not optimally 

Markovian (i.e., do not take into account the optimum blend of past and present 

conditions, resultings in oftentimes ineffective model order size and form).   

Additionally, traditional statistical tools utilized in business analytics use classical 

assumptions about the data model and dynamic of an organization.  They place an ill-

fated faith in the predictive powers of classical methodologies and hence of the 

organization physics.  For example, the financial crisis and meltdown of the US markets 

from 2007 to 2008 and the subsequent credit crisis of 2009, were essentially products of 

business financial models that predicted safer margins of error for loan defaults, 

nonexistent derivative coverages, and higher credit ratings of companies than what were 

the case.  Outliers or “black swans” were underweighted, while normal conditions were 

overly emphasized (Posner, 2010; Taleb, 2007).  Positive feedback mechanisms in the 

financial systems then led to the snowballing of failures of bank loan transactions and 

their coverage.  Moreover, irrational trading and rating of companies misled the general 

markets into aggressive group behavior (Richard, 2010).  Heightened volatility in the 

financial markets and in those market models of trading and worth rating created snow-

balling and disasterous cascading effects.  However, volatility is part in parcel to the 

general-uncertainty Itȏ processes of an info-holarchy.  Dashboards typically do not take 

into account another halo effect, that of external competitive performance which helps 

form a relative measure of business performance.  Externalities are another form of 
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environmental effects in an evolutional model of organization.  Exogenesis, as depicted 

in the evolutional model of the info-holarchy, is a broad stroke towards this revelation. 

Business analytics use the traditional tools of classical statistics and graphing 

techniques.  However, data graphing may be a very subjective art as has been depicted in 

Wainer (2010) where historical misuse of graphs to skew a political or business decision 

was addressed heavily.  Statistical estimation does not lie given the assumptions that they 

require; practitioners that abuse or misuse such tools may have deliberate intentions to 

mislead through the lens of an apparently legitimate looking display.  This study proposes 

to conceptualize a new kind of category of displays – holographic virtual reality 

dashboard-caves in which micromaps that represent the structural or various functional 

submaps embedded in a business are presented with overlying patterns of behavior.  An 

example of such a category of display is a network map depicting nodes as the member 

actors of the business in various structural maps that represent relationships. These 

micromaps will have processes overlaid on them, e.g., communication bandwidths 

between nodes (how often and when do they communicate with each other), output and 

input resources that they commonly are tasked to interact with, and linkage for depicting 

their ranking (i.e.interdependence in promotion and team dynamics). Micromaps are 

simply geographic or structural overlays put on traditional data graphics used in order to 

clarify patterns of behavior in data evolution (Carr & Pickle, 2010). 

The unpredictability of predictability of nonlinear, chaotic, and holistic processes 

is the norm in business analytics.  Hence, it behooves one to consider another approach - 

consideration of a replacement to traditional prediction.  Instead, general patterns of 
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morphogenesis would serve our purpose more adequately than false, detailed 

prognostication.  Recent evidence points to the power of observing patterns of behavior 

instead of statistical analysis when predicting bifurcations or tipping points in systems 

(Scheffer, 2010).  Resilence of systems can be measured based on observing the patterns 

and dynamics of fluctuations manifested by small perturbations to these systems.  Early 

warning signs of catastrophe or dramatic shifts in behavior may be gleamed from critical 

slowing down phenomena or slow recoveries from perturbative disturbances to systems.  

This is a measure of system fragility.  It can be translated from higher autocorrelations in 

subsequent time incremented patterns (general time series), larger variances and 

skewness in general patterns and increased correlations between linked or similar nodes 

(with respect to some similarity measure) in the system. Patternization via the 

construction of general network displays overlaid with dynamic state transitions in a 

holographical representations are a potential tool to use in finding these general systems 

warnings.   

As an application of the info-holarchy model for organization, general patterns of 

evolution may be dynamically presented in the form of a multidimensional view - a 

holographic representation of the holonic levels of that organization as the uncertainty 

process of workflow is unveiled through a time sequence.  Each holonic level in an info-

holarchy is projected onto the holograph as a single holo-print.  The totality of holonic 

levels thus represents the holograph.  As a process propagates through a holon and its 

holonic level, that “projection slice” of the holograph is dynamically updated in real-time. 

Since each HEAD member of a holonic level family passes along the process dynamic to 
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subsequent levels, these projection slices are simultaneously updated as per the natural 

velocity of the process.  The patternization of that process on the morphology of the 

holarchy is manifested through the multidimensional change in the holograph. 

Reviewing the anatomy of a holograph may be instructional at this point.  When 

the constituent parts of an info-holarchy have been setup, the mapping from holonic 

levels to the various holographic projections onto the hologram will be made.  

Holography owes its origin in optics as researched and developed by Dennis Gabor in 

1947 (Gabor, 1949).  Technically, holography is the process of collecting various 2-D 

images of an object taken at different vantage points and projecting them onto one 2-D 

photographic film.  The various 2-D images are reflected from laser light shown at these 

vantage points at the object and redisplayed when viewing the projected film at different 

angles.  Specifically, a coherent light beam is split by a beamsplitter into a reference 

beam and a direct light beam that reflects off the object.  The reference beam directly hits 

the photographic film as the object reflects its light waves from the original coherent 

beam.  The reference beam records phase information while the reflected beam reflects 

intensity. Interference patterns are then created by the superposition of both incoming 

wavefronts onto the film. Variations on the light source used includ a single point source 

for the reflection and a plane wave source for the reference beam. The interference 

pattern will then be different, reflecting a sinusoidal zone plate rather than the more 

traditional diffraction grating created by the inference. One of the more interesting 

phenomena that happens with holography is that even when the object is removed during 

the reflection period, the reference beam will continue to illuminate the film that has had 
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the “past” reflections from the object encoded and will continue the inference patterns, 

hence the continued image of the object. This is referred to as the virtual object. 

By viewing the flat film at consecutive angles, a simulated 3-D image of the 

original object is realized.  More generally, Gabor proved that this holographic version of 

a 3-D photographic image of a 3-D object may be represented on a 2-D surface.  In optics 

this is achieved through the aforementioned recording of both the phase and amplitude 

information of the light waves reflected off of an object, as opposed to just the intensity 

in regular photography.  Intensity is then simulated by coherent illumination and the use 

of the reference beam from the light source (See figures 3 and 4 below).  The interference 

pattern that is introduced by the reference beam and the scattered light wave is recorded 

as the photographic intensity onto the flat film (Hariharan, 2002, pp. 1-10). 

 

Figure 22. Holographic recording process  
Adapted from “Holography recording process” By R. Mellish. 2009. Copyright 2009 by 
R. Mellish. Reprinted with permission under the GNU Free documentation license – 
Creative Commons Attribution-ShareAlike 3.0. 
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Figure 23. Holographic reconstruction  
Adapted from “Holography recording process” By R. Mellish. 2009. Copyright 2009 R. 
Mellish. Reprinted with permission under the GNU Free documentation license – 
Creative Commons Attribution-ShareAlike 3.0. 
 

 
The reconstruction of the hologram is the manifestation of the interference 

patterns that were created from the reference and direct light beams onto the film 

medium.  However, the early versions of holograms suffered from inferior quality and 

blurring. This occurred because of the interlapping of wavelets from the virtual object 

and the reference beam.  The technique known as off-axis holography was developed by 

Leith and Upatnieks (1962) to remedy this. In it the virtual object light wave is offset 

from the reference beam by a certain angle,θ that cancels out the blurring. Equation 

(6.19) below describes the components of the off-axis complex amplitude of the resulting 

hologram image on a film.   
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The natural evolution of holography in computation is the idea of generating these 

interference patterns algorithmically - the computer generated holography (CGH). In 

CGH the interference patterns and the associated hologram are computed using the 

mathematical description for the reconstructed image. This is done through the 

computation of the complex amplitude of the transmitted wave, 
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where r and o are the complex amplitudes of the reference and object beams respectively, 

t is the background transmittance, and β is a parameter determined by the photographic 

medium (Hariharan, 2002, pp. 10-13). With respect to equation (6.19), the first term is 

the amplitude of the directly transmitted beam, the second term is a halo effect around 

this direct beam, the third term is the original object wave amplitude, and the forth term is 

the amplitude of the conjugate image which represents a real image. If θ is large enough, 

the virtual image will be separated from the directly transmitted beam wave and the 

conjugate image, hence the cleared hologram in the off-axis version. 

Holography, in theory, can be further generalized to extend to any dimensional 

reduction (i.e., an n-dimensional object can be represented (imaged) on an (n-1)-

dimensional surface and from different wave sources such as sound, radiation, etc).  The 

mechanics of such interference processes are, of course, dependent on the physical 

properties of the wave and medium involved.   The most interesting wave or field that 

may be transmitted by the holographic method is that of an information field discussed 
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and expanded on earlier. As a quanta, the informaton can be a wave (or field) or a point 

particle in abstraction if its quantum nature is exploited. However, in our metamodel, the 

more powerful form of the uncertainty computation bit, the g-bit, has quantum properties 

that are also generalized. Holography applied to informaton fields generalizes the 

practical 3-D holograms that are generated currently. Informatons and info-holarchies are 

inherently multidimensional hence their direct holographic representations onto a 2-D 

surface are not yet understandable, much less producible. Nonetheless, the human 

representational dimensionality of informatons may be reduced by introducing sensorial 

dimensions within the 3-D hologram, i.e., tactile/haptic, olfactory, observer position-

dependency. Holographic image reduction is generalizable to information spaces and 

hence to physical ones. What may be viewed as the most powerful generalization of 

holography to entropy in spaces is the Holographic Principle(s) in contemporary physics. 

Susskind introduced a prophetic generalization to this concept in terms of 

information content (entropy) of a cosmological object.  Susskind (1995) labeled it the 

Holographic Principle. Bekenstein (2003) formed a bound for the amount of entropy that 

can be contained about an object given its area-the Bekenstein bound. Bousso (2002) 

universalized this premise to any object, closed or open.  Specifically, if A defines the 

surface area of the object, G is the gravitational constant, ℏ is Planck’s constant and 

maxS the maximum (covariant) entropy of that object, then one has the bound, 

 max
4

A
S

G
≤

ℏ
 (6.20) 
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Using the generalized holographic principle of Bousso (2002), a chain of even 

more general information reduction is possible.  Consider the total information (Shannon, 

organizing, i.e, shaping, and semantic or semiotic), I contained in an object that resides in 

an abstract physical spacetime region, R of dimension N.  Let max
N

S denote the maximum 

entropy contained in that spacetime region, R.  Then one has the following chain of 

bounds: 
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Here, n
A depicts the n-dim hypersurface boundary which is a lightsheet (light rays that 

extend a hypersurface) and 2
A is the limiting 2-D surface boundary.  However, entropies 

are not, in general, mutually exclusive or linearly additive from subregions—generalized 

information is not conserved even in closed regions.  Nonetheless, a simple sum can be 

expressed without physical significance because of the possible geometric complexities 

of receding boundary hypersurfaces,  
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 (6.22) 

Energy of an object is also expressible as the product of its entropy and 

temperature (radiation is a generalization to temperature) (Jacobson, 1995).  Since 

entropy is proportional to the geometrical dimensions of an object, entropy may then 

define geometry through the use of Einstein’s gravitational equation relating energy and 

mass.  These relations are bounded by the Rindler causal event horizons of the object 

(i.e., the causal limits of lightspeed distances and time).  It does not take into effect 
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possible quantum entanglement between the object and a component of its complement in 

the universe. The earlier discussion on super-correlations of entanglement in chapter 2 

implied a new kind probability of causality may be possible in this instance.  The 

causaloid structure was considered for this exact situation. Causaloids are then the causal 

mechanism connecting spacetime and quantum properties of mass and hence of 

informatons in an info-holarchy.  

The concept of holographic principles leads to the digital Bloch sphere whose 

surface can contain a carpeted array of qubit machines that represent the contained 

information space of a quanta. In our case, an informaton would be the fundamental 

quanta for a generalized Bloch sphere for a g-bit, as constructed earlier. Regardless, 

entropy becomes a governing measure of spacetime curvature (geometry) of an object 

and of its quantum nature through its quantum mutual information with other objects or 

with its compliment in the universe, as was discussed earlier in chapter 2. Gravitational 

lensing is the mechanism that curves light when in the presence of huge mass/energy 

sources. Evidently, it also distorts the causal component of spacetime within the Rindler 

horizon.  The theoretical gravitational field is the corresponding structure for 

gravitational lensing. Gravitational fields must therefore contain information in order to 

shape spacetime, which itself contains the quantum information of matter and the 

causaloid structure for time construction. 

By defining the boundary between a random object in the universe and its 

complement, i.e., the rest of the universe, the object’s entire information content is 

contained on that boundary (Vedral, 2010).  This is a completely general object in 
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existence, including a living or anthropomorphic structure.  The boundary of such an 

object may be more complex than the object itself, as in the case of a business 

organization.  Nonetheless, this is precisely what is being proposed here. Business 

entities, however complex and dynamic, have boundaries and exogenesis, that is, they 

interact with their externalities precisely and completely via this boundary.  

While black holes and other cosmological objects contain massive amounts of 

information via Hawking radiation, businesses contain intelligence (BI) that propagates 

outward via their collaboration and competition (coopetition) with industry rivals and 

allies, government entities, and the general public that they serve.  Businesses interact 

with the usual externalities that humans encounter - natural phenomena. The concept of 

projecting reality to a lower-dimensional manifold has its roots in antiquity – Plato’s cave 

inception of reality, the Allegory of the Cave from his work, The Republic, where the 

world and its knowledge is perceived as an allegorical shadow on the walls of a cave 

(Plato, 1497).  The cave in the holographic principle is the lower-dimensional surface of 

an object. In the case of a business holograph, the cave is the inside of a Bloch sphere. 

The Bloch sphere may also be inverted to appear on the surface of enclosed cave walls.   

Caves provide a virtual reality environment of immersion, one in which displays 

are projected onto the side walls of an enclosed theatre engulfing a tracked observer.  The 

floor and ceiling are down and up-projected mirror reflected displays respectively.  The 

tracked observer wears electro-magnetic sensing goggles and gloves that collectively feed 

3-D coordinate and angular information to system computers which in turn execute 

software that controls the displays for the cave. In this way, the real-time movements of 
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the tracked observer are feed into the cave algorithms which dynamically change the 

synchronized 3-D landscape of the display projections onto the cave surfaces.  Angled 

surround sound audio spectrum speakers and compensating equalization systems provide 

a virtual 3-D sound experience.  The resulting effect on the tracked observer is one of 

navigating through virtual 3-D scenery (Cruz-Neira, Sandin, DeFanti, Kenyon, & Hart, 

1992).  The structure of the theatre consists of nonmagnetic materials, minimizing 

magnetization interference.   

Cave environments have been developed for use in military strategy simulations 

and subsurface imaging and hydrocarbon flow simulation for the petroleum industry.  

General frameworks such as the CAVE system have been created for generic virtual 

reality immersion cave development (Ohno & Kageyama, 2007).  More affordable and 

restrictive versions of immersion systems are the ImmersaDeck and Infinity Wall 

configurations in which no enclosure is used. Instead multiple projections are done onto a 

front-mounted frame of angled screens that the observer peers forward into, as with 

conventional flat screens (Czernuszenk, Pape, Sandin, DeFanti, Dawe, & Brown, 1997).  

Fakespace Labs Fakespace WIDE5 HMD is a commercial head-mounted display (HMD) 

goggles and gloves-based only immersion system that does not use theatre or front 

displays.  It was developed in conjunction with the USC computer graphics department 

(Jones, Bolas, McDowall, & Debevec, 2006).  All Fakespace and other HMD 

manufacturers’ immersion displays are shown inside the HMD goggle environment 

which entirely encloses the eyes, with the worn gloves providing hand navigation 
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coordinates.  In caves, HMDs, Infinity Walls, and ImmersaDesks, multiple observers can 

participate, but because of computational loads usually only one observer is tracked. 

 

Figure 24. Business info-holarchy performance dashboard-cave 
Adapted from “Cave automatic virtual environment at EVL University of Chicago at 
Chicago” By D. Pape. 2001. Copyright 2001 by D. Pape. Reprinted with permission 
under the GNU Free documentation license – Creative Commons Attribution-ShareAlike 
3.0. 
 

In the context of info-holarchy simulations that describe the dynamics of business 

organizations through performance dashboards, caves can display holographic and 

stereographic images of the flow of information gradients for the spectrum of business 

KPIs, strategy profiles, and network flow of various organization properties.  Iso-surfaces 

and ortho-slices can be computed and displayed on the cave surface to show cross-
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volumes, surfaces, and curves of given factor profiles in these performance dashboards.  

For example, multivalued surfaces representing KPIs under various business and market 

scenarios can be sliced to produce equi-valued volumes, surfaces, or curves that depict 

patterns of commonality within those profiles. As when the observer changes relative 

projective or stereographic vantage points to a holographic display, so can changing 

vantage points inside the cave change the views into the info-holarchy.   

 

Figure 25. Cave projection design 
 

Caves and holography can be combined to produce holographic imagery inside 

the cave, a novel display type to be developed for info-holarchy views.  Sensorial stimuli 

can then be merged with these holographic caves environments to produce fully 

interactive and immersive virtual reality holography caves with body motion, tactile and 
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haptic reactions, and olfactory feedback mechanisms tied to 3-D vantage movement 

within the cave dome.  Info-holarchies represented in this rich immersion will develop 

the possibility of global control-feedback of massive organizational structures.  Novel 

real-time adaptive and anticipatory decision support is embedded in these displays 

because the info-holarchic flows are projections of universal information flow in an 

organization.  They are the immersive patternizers of organization. 

 

Figure 26. Head mounted display (HMD) 
Adapted from “Head mounted display” By NASA, 2007.  Copyright NASA 2007. 
Reprinted with permission under the NASA public domain usage guideline. 
 
 

In any business decision support display, including the proposed holographic cave 

platform, the business boundary defines the limits of the structure for the holographic 

performance dashboards of that business organism.  It is the entropic boundary and hence 

is its information conduit to the outside world.  More generally, this boundary can be 
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used internally as a self-reflection of the states of its operations and processes.  This is the 

ultimate generalization of the business entity’s state of business intelligence (BI). 

However, state implies time dependence. Taking a temporal snapshot, as through a 

mechanism such as time series or more generally, a stochastic process simulation, is an 

infinitesimal measurement of that business dynamic.  Even when time ensembles are 

collected this gives but a limited performance measurement in time.  Consider the 

possibility of consuming either a sufficiently large and relevant subset of time ensemble 

measurements or a complete holographic projection of all “living” attributes of a business 

organism.  What would such a multidimensional hologram of a business organism 

resemble?  What would any multidimensional graphic of a process look like in order for 

it to be consumable by human consciousness? 

To answer this, first view a hologram as a general dimensional reduction tool for 

information in light waves.  To extend this process consider more general forms of 

information, the informaton.  These constituent quanta of information can be collected in 

multidimensional spaces and projected onto embedded subspaces, hence their true 

representation in lower dimensional spaces.  If a conduit of attribute spaces of a business 

organism can be represented by a stream of informatons via the info-holarchy, then this 

portion of the info-holarchy can be holographically projected onto smaller and smaller 

dimensional view ports.  View ports are generic graphics depicted onto human-

understandable media, such as lower dimensional holographic photograph film or laser 

holograms.  However, these media are quite limited, they show visual dimensions. 
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Introducing haptic/tactile movement/feedback and olfactory dimensions expands the 

expressiveness of info-holarchies to humans and general inference machines.  

 

 

 

 

 

Figure 27. Info-hologram 
 

The laser hologram introduces true 3-dimensional images of a reconstructed 

object. At any particular perspective point, viewing such a hologram induces an 

appropriate stereo image in the human brain.  If that view is sufficiently complete to 

induce a decision process, it has reduced the effective dimension of the information of 

that object (i.e., the object itself).  Consider now a 3-dimensional hologram of an object 

that represents the info-holarchy of that object at a spacetime coordinate (See Figure 3).  
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By moving around that hologram in a certain dimension, (e.g., around the hologram at a 

constant height) the hologram image morphs into another spacetime representation of the 

info-holarchy.   

By encapsulating the hologram in a surrounding Bloch sphere, each physical point 

on that sphere would represent another reality snapshot of that info-holarchy, a 

spatiotemporal positioning in spherical coordinate space.  The Bloch sphere was utilized 

earlier to represent a spherical coordinate projection for a qubit pure state. Here it is used 

to house a spherical coordinate projection for a stereographic perspective of the observer 

“eyes” to a centroid of the hologram. Since the azimuthal levels of the observer eye are 

dynamic (can bob up, down, left, and right) with respect to the hologram centroid, the 

spherical projection onto the Bloch sphere is unique.  

For a given point perspective (stereographic projection for the human visual 

system) on the sphere, consider the distance vector formed by the distance between the 

receptor (your visual knowledge system) and the (stereographic) projection onto the 

Bloch sphere surrounding the hologram.  This distance metric would add another 

dimension to the holographic info-holarchy representation.  One now has the space of 

stereographic projections onto the Bloch sphere from an external observer system (human 

visual-interpretative system), along with the 3-D hologram at that coordinate, the space of 

sense attributes (haptic/tactic, olfactory, etc.) and the distance metric from the observer 

system to the Bloch sphere.   

At any given multidimensional coordinate encapsulating all these attributes, the 

intensity and color coordinates for pixel neighborhoods (e.g., RGB, HSV, ICICM - 
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integrated color and intensity cooccurrence matrix) of the hologram image represents a 

further informational representation structure at that business life point.  Novel methods 

for representing both intensity and color of pixel neighborhoods have been investigated, 

including the ICICM and would serve as a further compression of information (Vadivel, 

Sural, & Majumdar, 2006).  This ensemble of dimensional reduction and representation 

in a multidimensional information hologram will serve as an isomorphism to the patterns 

of the info-holarchy proxy of the business organism.  This is the gist of the holographic 

info-holarchy for business objects. 

So far the sensorial feedback from the info-hologram of an info-holarchy has been 

somewhat passive in that an observer would have to traverse around the Bloch sphere 

containing the object. Consider active interaction from the observer in the form of 

transforming the perspective of the hologram at each given fixed observer coordinate by 

the movement of its optic lenses (eyes), moving the stereographic projection on the Bloch 

sphere. This transformation would change a certain subset of attribute views while fixed 

on a perspective coordinate.  
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Figure 28. Bi-directional hand gesture manipulation of 3-D objects on flat screens 
Adapted from “BiDi screen: A thin, depth-sensing LCD for 3D interaction using light 
fields” By Hirsch, Lanman, Holtzman, Raskar, and the MIT Media Lab. SIGGRAPH 

ASIA 2009 Art Gallery & Emerging Technologies: Adaptation, 62. Copyright 2009 by 
Hirsch, Lanman, Holtzman, Raskar, and the MIT Media Lab. Reprinted with permission. 

 

Additionally, the use of hands (secondary connective devices) to transform the 

hologram via 3D hand gestures, again at a fixed perspective coordinate, could be 

introduced for further attribute view changing. Certain prototypes for this manipulation 

are currently underway and are referred to as bi-directional manipulation of computer 

screen displays – BiDi screens (See figure 6) (Hirsch, Lanman, Holtzman, & Raskar, 

2010).  The use of BiDi and cube manipulation versions of software development 

interfaces for creating 3-D images and holography are also under investigation and may 

be used as a tool for construction of info-holograms and their 3-D imaging portals 

(Lertsithichai & Seegmiller, 2002; Watanabe, Itoh, Kawai, Kitamura, Kishino, & 

Kikuchi, 2004). Finally, the use of voice commands and neuro-sensory connectors may 

increase the power of expression that the observer may have for manipulating and 

viewing the info-hologram and the patternization of the info-holarchy that represents a 
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business organism.  At this point, the performance dashboard analogy that was initially 

used for this section becomes obsolete and inadequate for the apparatus built for the info-

hologram of a business. 

The info-hologram represents an N-dimensional hologram that has been 

“flattened” onto a 3-D image that is suspended inside a Bloch sphere.  The values of the 

info-hologram depict a field, i.e., for a coordinate point, p, f(p) is a multidimensional 

vector representing the info-holarchy at p.  This is not a static image; rather the dynamics 

reflect the adaptability of an info-holarchy. More specifically, a holarchy represents a rich 

organizational structure that possesses holonic substructures and individual holons as 

cells. These cells represent suborganisms of the organization. In businesses this could 

range from mega-departments and board-of-director related hierarchies to individual 

employees and devices. However, the representations do not stop at the “matter” of the 

organization. Any potentiation of processes is also represented as trajectories, past, 

present, and future, as projected by the patternizations of the informaton-based processes 

described by the GTU-inspired models of chapter 4. What this means in terms of the 

quantitative descriptions depicted by traditional graphics and displays in a performance 

dashboard is a generalization to multidimensional attributes as displayed by the hologram 

and the perspective changing position of the observer – the potential decision-maker and 

business human interface.  

Graphs and histograms are replaced by multisensorial displays - color/intensity of 

pixel neighborhoods in the hologram, shapes that add to the description of numerical 

magnitude and direction, and by changing perspective around the Bloch sphere, the 
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spherical angle, and shifting textures (pixel neighborhood gradients). Patternization 

images are the “a picture is worth a thousand words” equivalent for quantitative analysis 

and business analytics. In other words, a particular blob image, with a unique 

color/intensity pattern, directional, textural,  and angular gradients, olfactory (smell), 

tactile/haptic, and sound feedback patterns define a particular state of the business 

organism.   

Holarchies are represented graphically by their self-similar hierarchical structures. 

In a 3-D rendition of this complex organizational chart, a holon can represent an 

individual, a department, a regional facility, a functional group, or a meme that is present 

in the holarchy. This meme space in turn represents the dynamic flow of information in 

the info-holarchy.  Holons are relationally represented within and about holonic levels.  

Blobs of images with dynamic textures, coloring, haptic/tactile, and olfactory outputs 

sensorially represent these holons within the larger blob of the info-holarchy. In a 

particular meme lifecyle, the holon representing that meme will change its sensorial 

output dynamically with respect to the vantage point of the observer of the info-

holograph as described by its stereographic projection onto the containing Bloch sphere. 

In other words, the observer observes the history and the future potentialities of the meme 

by moving around the Bloch sphere. While this meme lives in the info-holarchy, other 

“pieces” of the info-holarchy are similiarly displayed. For example, the organization of 

individuals and groups within the business are updated as positions change with respect 

to tasks, goals, and strategies. Hence both structures and processes are viewed 

dynamically around the Bloch sphere.  Business rules are instantiations of memes as well. 
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They may also be framed as metamemes – templates for business behavior.  These rules 

are propagated through their lifecycle within the info-holarchy, along with their generated 

by-products – other memes, material, and changes in the structure. 

The crucial point of using info-holarchies as constructed in this study to represent 

business organisms is the nature of the uncertainty phenomena in each holon and thus as 

propagated in the holarchy.  Holons are entities with inherent uncertainty in business 

organizations because humans and their by-products – memes, products, and 

relationships are.  However, this uncertainty is generalized because transpersonal and 

other uncertainty paradigms enter into their behavior.  Quantum behavior and 

nonstandard logics are used by societies in dealing with economic and relational 

processes.  This is because the stuff of matter seems to be information which is built on 

relationalism. Relationalisms are generated by a combination of quantum and fuzzy 

logics.  It was posited by this study that the GTU-logic subsumes both quantum and fuzzy 

logics and their combinations, in addition to generating brand new uncertainty logics. 

Business entities are instantiations of societies and so can be based on GTU-logic and 

hence on computations based on the gu-bit. In chapter 5 a proposal for utilizing a 

computational paradigm based on g-bits will be proposed for future study.  G-bits are 

highly flexible because they can be used to represent general uncertainty in very general 

units of computation such as whole fields. Fields can represent whole linguistic 

statements or other higher ordered mathematical structures.  Logic bits are then replaced 

by whole generalized uncertainty structures. 
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Equilibrium patterns are manifested by small gradient changes in these blobs, that 

is, the blob does not change appreciably with small observer perspective changes or 

observer initiated perturbations (plucking, pushbacks, or numerical what-ifs). 

Nonequilibrium patterns can be categorized as in chaos and bifurcation analysis – their 

patterns change with small observer perspective changes and in certain ways.  Near-death 

states may mean small to null gradient “movies” around large perspective spaces of the 

observer.  Business alerts that call out for further scrutiny of business practices are 

triggered by large gradient patterns in perspective space.  This means that an observer, by 

making small perspective shifts around the hologram, will encounter large shifts in 

patterns of the blob representing the business info-holarchy. 

Patternizing the blob, the info-hologram, is the generalization to modeling 

physical and natural laws around the collection of data.  If the info-holarchy is a business 

organism, the patternization is the business rules space that contains the trajectories that 

comprise what is possible with the existence of that business.  The space of 

patternizations is the manifestation of business process management systems (BPMSs).  

The corresponding flow of information in such systems is the info-holarchy and its 

sensorial output, the info-hologram.  Because patterns are global with less specificity for 

localization of its smallest subcomponents – the informatons, they do not fit into the 

traditional definition of laws or rules.  They supercede traditional categories of business 

rules.  

Patterns in info-holarchies are also displayed by the weight or strength of network 

links for iso-tasks or iso-goals.  These are the information subnetworks that represent task 
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or goal oriented subgroups of entities in the info-holarchy. Again, entities may consist of 

agents or holons within the organization, be they employees, resources or computational 

devices or machinery.  As an example of these scenarios, consider an adopted 

organizational strategy that dictates the following task: design, create, and market a rival 

software product in order to equalize a competitor’s threat and to initiate another niche 

for the organization.  The entities involved are software engineers and developers, project 

managers, software sales marketing specialists, an outside contract expert in the domain 

of the software application, application testers, and a project leader and advocate.  Each 

individual represents an employee node in the info-holarchy, but so do the resources and 

devices they are to utilize towards this task.   

The collective state status of the product is displayed via linkage groups 

connecting these entities, reflecting individual and subgroup status.  Their patterns or 

network strength depict weighted connections that show where and how specific subtasks 

evolve and how they collectively fit into the master pattern of the project.  The width of 

network connections is proportional to the strength of the linkage in the subnetworks.  

Connector width then depicts a visual measurement of task or goal fragility.  The length 

of a connector depicts the relative speed/accuracy of transmission of information between 

the entities.  Additionally, be utilizing feedback or haptic pulling on these connectors, the 

observer can surmise the resilience of these connectors or task status.  This would have 

the behavior of pulling or pushing on a rubberband, observing how it would react to 

stress perturbations, i.e., project pullbacks, dependent subtask delays, or strategy or 

management decision changes.   
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Each holon-level connector is represented as a rubber band with a width that 

measures the fraility or brittleness of the project at that inter-level transfer at a particular 

time snapshot and length representing the relative speed/accuracy of exchange of 

information.  For each snapshot each inter-level rubberband is lined up in holon-level 

project order to form a snapshot rubber band panel which we call a tensile (strength) 

panel.  One pattern of a project would then be the parallelepiped consisting of the group 

of snapshot tensile panels.  Each subgroup of rubber bands in any subgroup of tensile 

panels can then be “plucked” to test its collective tensile strength and pitch/frequency as a 

measure of brittleness (fragility) of that time evolutionary working subsection of the 

project. 

 

 

 

Figure 29. Software project as info-holarchy view 
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Brittleness can be measured by similarity divergence measures and speed and accuracy of 

transmission of information by channel fidelity.   

Patterns, nonetheless, as have been depicted in this study remain passive.  

Decision-makers need to take action in order to become change agents, to morph the 

situation at hand.  Hence, “pushbacks” need to be included in the mechanisms of the info-

hologram. Pushbacks are generalizations to knobs on a control panel that affect the 

current state of the “machine”.  In a particular info-hologram view, a pushback will then 

simply be the process of having the passive observer become the proactive agent through 

the use of bi-directional manipulation of the hologram, making indentations, pushing in, 

or pulling out in a certain attribute direction – changing the proximal pixel neighborhood 

image.  This active participation by the observer will then lead to a change in how that 

business process operates to create the attribute – that action changes the patternization or 

general law for its operation.  An example would be in the pushback for inventory 

processing when demand of the product decreases according to some external phenomena 

in the appropriate market.  Resource re-allocation is the end process of such pushbacks 

from the decision-maker. 

The passive observer turned would-be decision-maker then manipulates the 

patterns of behavior of the business organism in real-time according to the newly 

sculpted info-hologram.  The timescale of the business pushback on this decision is then 

speeded up by the pattern projection created by the info-holarchy’s GTU models.  

This mechanism is the generalization of the “What If” scenario of business 

analytics.  The realized info-holarchy is then compared to the projected patternization 
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based on this action in the real-time scale. Evolutional adaptation then kicks in to change 

the GTU-processes that engineer the info-holarchy dynamics.  This is simply natural 

selection on hyper-steroids and defines the agility of the business info-holarchy.  The 

case for handling causal versus correlational analysis must involve the GTU-inspired 

adaptation mechanism because traditional causal analysis is based on linear causal nets 

where Aristotalian logic reins.   

Anthropomorphically inspired structures such as cultures and societies which are 

generalizations of business organisms do not follow a completed Boolean logic – 

irrational or satisficing streams of thought contaminate the process when information is 

limited, incomplete, fuzzy, or suboptimal as in the generally posited bounded rationality 

process in socio-economic markets and other human organizations (Simon, 1991).  

Humans mostly choose the “Take the Best” alternative decision (algorithm) of 

Gigerenzer (2000) and in so doing, assign an artificial suboptimal causality chain in their 

decision process.  Because processes in an info-holarchy are generalized (uncertainty) 

multiobjective games utilizing GTU Itȏ models, as earlier shown in chapter 4, bounded 

rationality can be optimized for imperfect inference machines, i.e. human decision 

processing (Yu & Yu, 2005).  Holon agents in an info-holarchic organization are 

inference machines and follow the general description of GTU processes, but as more 

general entities, such as an object traveling under the nontrivial influence of multiple 

gravitational forces (relativistic effects) and nonlocal correlations (quantum effects), are 

accommodated for by the underlying LQG spinfoam formalism. 
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Lack of organizational information is masked by the lack of information linkage 

and inter-connectivity.  Holarchies, in particular, info-holarchies, overcome these 

structural gaps through the richness of their self-similar connectivity and global 

communication.  In the end, causality sets must be robustly analyzed, that is, something 

more powerful than classical probability in quantum processes should be utilized.  That is 

the gist of the use of the concept of causaloids in quantum mechanics, general relativity, 

and in this study’s info-holarchy metamodel when classical assumptions are not satisfied, 

which is usually the case for any living or adaptive physical organism. 

The proposed info-hologram is to be built utilizing CGH on either future true 3-D 

holographs or currently constructed 2-D sterographic displays with multiuser eye-

tracking technology (Stolle, Olaya, Buschbeck, Sahm, & Schwerdtner, 2008).  Huge 

amounts of real-time processing are necessary for updating the info-holograph images.  

The requirements for computational robustness are not presently met by most 

multiprocessors and hence it is necessary to employ an array of super-computational units 

with large bandwidths of I/O or SSDs (solid-state devices) for realistic transaction times.  

Parallelization of component machines will speed up the processing of subsections of the 

business object being imaged.  For example, dedicated machines should be used for each 

department or individual.  This creates an interesting proposition for the use of employee-

assigned computers akin to the massively parallel Internet distributed arrays volunteered 

from the general public for the SETI@home projects (SETI, 2010).  When an employee’s 

computer is relatively idle, its compute cycles may be used to power the info-holograph 
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portion of the monitorization of that employee’s information interface to the business 

(i.e., all their tasks, knowledge of systems, experiential data, etc).  

Info-holarchic Computing 

Computational models based on informaton-based fields in the spirit of a model 

introduced for morphic (field) computing by Resoni & Nikravesh (2007) and the 

extension of the info-holarchy metamodel to mathematical topoi described system of 

systems (SoS) will now be presented. 

The info-holarchy based metamodel influences the role of information from first 

principles as the main concept of creation of organizational physics.  Particularly, one 

gives pause to a logical extension of this concept to computation.  The field-theoretic 

basis of the info-holarchy, its information field theory, sets up an appropriate 

generalization to symbolic computation akin to the idea of morphic computation 

introduced by Nikraesh & Resconi (2010).  In morphic computation, the atoms of 

calculation are Sheldrakian morphic fields, i.e., fields that may influence physical 

phenomena.  Physical field theory though, may be a scientific crutch because it requires 

that space be occupied intermediate to matter by causative agents not yet detectable by 

instrumentation. However, most post-modern physical models assume some semblance 

of fields, e.g. gravitational fields in general relativity, string field theory, field theory for 

LQG, quantum field theory, and Maxwelliian field theory.  This study constructed a field 

theory of information particles and the transference of generalized information bits.  In 

these theories fields have been consistent with data results. However, morphic fields have 
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not met with the same results. Additionally, tenets of morphic fields do not square off 

consistently with evolutionary theory. 

Morphic fields can, however, be utilized to abstract the concept of physical fields 

for biological organizations, albeit, with corrections emanating from the physical field 

theories of physics research.  In the case of a more powerful and general computational 

model, morphic fields can be used as bookmarks for generalizing symbolic mechanisms.  

Instead of utilizing symbols such as language, words, bits, qubits, or even this study’s 

most general form of a computational bit, g-bits and their ultimate manifestion, 

informatons, one may manipulate field values or tensor fields.  Tensors may generalize 

the spinor fields of QM, LQG, and other variations of quantum gravity.  In this study, 

tensor fields may generalize informatons – leading to a new definition of informaton 

tensor fields. 

To this end, morphic computing will be briefly summarized and redressed for 

informatons.  This is a future development of informaton-based or info-holarchic 

computational models.  Physical fields are values of observables, such as velocity 

vectors, particle geometry, angular momentum, assigned to points in space or of a 

submanifold of space.  This space, referred to as the reference space, R, for all practical 

purposes is a physical domain.  Without loss of generality, let R be an r-dimensional 

physical spacetime domain.  Let F be the set of physical fields defined on points of R.  

Each field in F, 
iF F∈  is defined on a subset of R, 

iR R⊂ .  The values of these physical 

fields defined on R may be general tensors. In particular, let the space of informaton 

tensors defined on R be denoted by 
IF .   
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Recall that informatons are topologically modeled via spin foam networks which 

are connected networks of spinor-like tensors.  Define the object space, O, isomorphic to 

an n-dimensional Euclidean space, n� , as the space of points whose respective 

coordinates are defined as the values of an informaton tensor, 
IF  taken on n points of R.  

Let 
mB O⊂ be a basis consisting of m informaton tensors in O where m n≤ .  Let 

( )mspan B H= be the span of the basis
mB in O.  In general, H is a non-Euclidean subspace 

of O.  For purposes of defining a computational machine, H is the contextual space.  Let 

X H∈ be an informaton tensor field.  Then X can be written as 

X v b v bα α
α αα

= =∑ where
mb Bα ∈ .   

The coordinates of X, v
α are the contra-variant components of X.  The v

α will be 

called the intensity of the sources of the basis fields for X.  In particular, if 

( ),  , 1, 2...,i ih h h H i n= ∈ = are considered to be prototypical fields (informaton tensors) 

and , 1, 2,...,is i n= are their corresponding source values (intensities) in O for X, then the 

superposition, 

 
1

( ) ( )
n

i i

i

Y s h r h r s
=

= =∑  (6.23) 

where r is the reference space point, is a projection of X onto H.  The object space, O, can 

be endowed with a suitable differential geometry and metric and thus become a 

differential submanifold (Riemanian) of n� together with well-defined tangent and 

cotangent bundles, α-connection and α-affine manifold.  An information divergence 

measure between tensor models, X and Y, ( )D X Y� , can then be constructed (Amari & 
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Nagaoka, 2000).  This produces a topologically measureable structure for the informaton 

tensor objects in O. 

Label the projection operator defined from (6.23) as Q. Then QX Y H= ∈ .  

When m n< , Q imposes a natural relationship between the components (contra-variant 

coordinations) of Y.  The sources are expressed as 1( )T T
S H H H X

−= via the generalized 

inverse utilizing (6.23).  It has been shown in Resconi & Nikravesh (2007) that one can 

generate invariants for any unitary transformation, U on the elements of O.  In this way, 

when one transforms the basis or prototype fields (informaton tensors), h into new 

prototype fields (informaton tensors) 'h Uh= , the new sources can be expressed 

as 1' [( ) ( )] ( ) ( )T T
S Uh Uh Uh UX S

−= = , an invariance. Moreoever, if ,a bQ Q are two 

projection operators defined on two basis spans, ,a bH H respectively with dimensions 

,a bm m , projecting onto two projection spaces ,a bY Y , then the product projection space, 

a bY Y Y= � can be generated from the ab-dimensional basis span 
a bH H H= � .  If for 

some projection space Y, there does not exist component projection spaces, ( ),a bY Y  such 

that
a bY Y Y= � , then Y is an entangled state.  The space of projection operators generalize 

the space of quantum measurement operators because they are based on informaton 

tensors which are based on the GTU processes that generalize quantum processes.  This 

generalizes not only the quantum logic used for quantum computation, but other non-

Aristotelian logics, such as fuzzy and intuitionistic logics. 

It is important to note that the objects of computation in this informaton morphic 

computation are not limited to classical bits, words, or even human linguistic symbols. 
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Indeed, informaton tensors are the objects of interest in these computations.  Continuing 

with the morphic logic, one endeavors to find the optimal sources (weights) 

1( )T T
S H H H X

−= for the input informaton tensor X, such that an appropiate divergence, 

( )D Y X� is minimized with respect to S, i.e., ( )min
S

D Y X� .  The input-output model 

for morphic computation of informaton tensors is illustrated by the flow diagram in 

Figure 7 adapted and generalized from the field version of Resconi & Nikravesh (2007).  

Resconi and Nikravesh (2007; 2010) also showed that their field version of morphic 

computing generalizes neural networks and fuzzy computation.  This study proposes that 

the informaton structure can be adapted for morphic computing by using informaton 

tensors as fields in the object space, O.  Using the causaloid adaptation, the relativistic 

holographic model as a computational machine from Appendix B, and LQG spinfoams, 

the informaton model generalizes physical tensors for all practical purposes. 
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Figure 30. Morphic informaton computation 
 

Consider the set of projection operators, ( ){ }i i I
Q X

∈
that can be applied to the 

computation of Y from X.  Additionally, consider corresponding different context spaces 

or spans of prototypical tensors, { }i i I
H

∈
.  The collection of pairs, ( ){ },

i i i I
H Q X

∈
indexed 

by some countable set I, constructs a set of computation machines for X.  The projection 

operators, 
iQ define the operators of calculation (logic circuitry) while the basis tensors, 

iH , define the context or rules (instructions) of computation.  The computation of the 
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tensor Y is categorized as acceptable if it is similar to the input tensor X, with respect to 

some similarity measure or divergence, ( )D Y X ε<� .  This is the generalization to the 

robustness, accuracy, and error tolerance of computation in classical computers.   

Moreover, because the objects in the reference space, R, can be considered to be 

the agents of computation, in an info-holarchy, each holon is represented by a generalized 

computational unit and the tensor value on it represents the agent’s contribution to the 

final output.  The info-holarchy then utilizes a particular computational device defined as 

( ),i iQ H for a computational job that requires the calculation of the output informaton 

tensor,
iY .  Fuzziness, bounded and measured rationality, quantum measurement, 

intuitionistic logic, and lastly, GTU processes which could include quantum gravitational 

computations, can all be emulated within an indexed morphic computation, i with 

multiple contexts, , 1,...,ik iH k K= together with the iterated application of different 

morphic informaton computation devices { }, ,ik i i i I
H k I Q

∈
∈ ,where I w= , described by 

the pipeline, 

 
1, 1 2, 2 ,

1 1 1
, 1,..., , 1,..., , 1,...,

... ...
k k w k w

w w
H k K H k K H k K

X Q X Q Q Q X Y−
= = =
⇒ ⇒ ⇒ =  (6.24)  

Each morphic informaton computation achieves a superposition of informaton 

tensor participation through their respective source weights.  Diverse logics, as described 

above, can be described within a morphic computation, in conjunction with a pipeline.  It 

is posited that this version of hyper-symbolic computation is theoretically achievable 

through the use of this morphic informaton computation model.
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Chapter 5: Summary, Conclusions, and Recommendations 

Info-holarchies: Organizations to Come 

In this chapter, a summary of this study’s work on the informaton, its field theory, 

and the subsequent organization evolutional dynamics, based on the info-holarchy 

metamodel, will be presented.  Consequent to these developments, the motivations for the 

development of this metamodel for information organizations will be reviewed.  

Additionally, several followup suggestions and extensions to the informaton model will 

be given.  The applications of this information framework for organization that were 

presented earlier in chapter 4 will also be further discussed and possible extensions to 

them will be given.   

In this study a novel metamodel for information-based physical systems, the 

informaton, a general information field theory based on the informaton, and a dynamic 

structure based on this pattern, the info-holarchy were developed based on contemporary 

discrete Planck-scale loop quantum gravity (LQG) theories, a mathematical topoi 

description, and the causaloid and generalized theory of uncertainty (GTU) models of 

inference.  Organizational decision processes are mostly based on classical statistical 

tools utilizing linear causal structures.  The description of classical organizational 

structures is inherently linear, minimally adaptive, and does not exhume much agility 

when externalities are tied to its performance.  Organizations are treated as nonliving 

entities that are autonomous to all but the most connected environments.  Nonetheless, 

organizations are seamlessly interacting with their environment.  Feedback mechanisms 

in organizations produce any agility and adaptability in those entities.  Feedback occurs at 
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all scales with respect to the organization.  For example, while human communication is 

the most ostensible, exchange of information transacts at multiple levels – intuition, 

psychological, indirect and hidden causalities, and synergestic manifestations, such as 

coopetition and coevolution.  These are all complex processes that are actionized in 

complex multiagent adaptive systems.   

The main tenet which manifests organization is the physical definition of 

information posited in this study.  Information, and in particular, informatons, are 

projected to be the smallest constituents of physical logic.  They construct physical 

particles and hence utilizing the standard model of physics, all energy and forces in the 

universe.  Info-holarchies are manifestations of informaton systems guided by the 

information fields described in this study. These fields follow the rules of the general 

inference of the general theory of uncertainty (GTU) that accommodates fuzzy, quantum 

and classical probability, and all nonAristotelian logics.  Info-dynamics describe the 

binding of the different scaling of processes – GTU processes that guide microprocesses 

with macroprocesses that follow entropic rules, tied together by an optimized control-

theoretic mechanism. 

As ostensibly important applications of the info-holarchy dynamic, this study 

patterned the neural network model of a brain and a socioeconomic entity, the business 

organization.  Brain dynamics, down to the microstructures of microtubules and quantum 

processes that adhere at that level to the organization of subfunctional suborgan groups of 

cells within the neural network, such as the hippocampus and the neo-cortex, follow the 

metastructures of info-holarchies.  Biological and quantum processes are specializations 
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of the GTU processes in info-holarchies and their respective subholarchies.  The GTU Itȏ 

micro processes coupled with the entropic divergence metric for macro processes, 

bridged by the control mesolevels pattern the electro-chemical and ionic flow of 

information switches in the mitochondrial tissue of neural cells, the mainstay of neural 

functionality.  Multiagent adaptability in an info-holarchy is shared by the dynamics of 

the neural structure of brains.  The emergence of chemical, ionic, and other components 

in hemoglobin transmission flow, including neurotransmitters and neuro-suppresors in 

the neural system is modeled in an info-holarchy by the calculation of its info-dynamic 

processes that govern the quantum manifestations. These quantum processes led to 

causative changes in the chemical and ionic profiles within each substrate and suborgan.  

Coevolution and speciation of neural cells along with the self-replication of connection 

structures ensued within neural systems.  These are all manifestations of an info-

holarchic presence. 

Business organizations, as are brains, are specializations of inference machines. 

These are self-reflective, self-producing and adaptive multiagent complex systems that 

possess emergent intelligence.  By examining business structures and brains, one may 

construct a patternization toolkit for these inference machines. Hence, the hypothesis of 

interest here is one of patternizing inference machines as info-holarchies.  However, as 

important is the construction of dynamic and holistic views of an info-holarchy. By 

designing a novel holographic representation of the dynamic states of a business, one is 

positioned to extend this to any info-holarchy. Therefore, the holographic performance 

dashboard that was presented in this study is a means to developing the requisite tools for 
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a truer systems view of an info-holarchy.  Holography was briefly reviewed as an 

efficient way to introduce a general performance dashboard, the lifecycle watcher of an 

info-holarchy.  Multidimensional holography extended this view for very complex info-

holarchies, abstracting a means of viewing a system of systems (SoS).  The immediate 

ramification of such a manifestation of higher level system displays are applications to 

holistic interactive human-machine interfaces specializing to human systems dynamics 

performance tools, apparatus that measure emergent behaviors in organization, and 

complex evolution patternizers replacing classical business analytics.  Classification 

analysis is supplanted by pattern similarity equivalences.  Regression and time series 

analyses are superceded by an ability to extend a pattern to a more mature version of 

itself that is a member of that pattern’s class, i.e., the use of time-extended representatives 

within each pattern class as a holon HEAD-type element for those class pattern members.  

Patterns in info-holarchy spaces take into account predictive and modeling errors by 

representing broad but prototypical behavior rather than numerical precision. 

Businesses will diversify based on novel information products (i.e., devices that 

propagate information in novel displays and manners).  This expansion will take place 

based on the concept of generalized adaptable information and will represent the third 

wave of business paradigms (the second being manifested by the super-exponential 

information explosion from the web, and the first being propagated through industrial 

machines). This study proposed that this third wave can be framed from a paradigm like 

that of the info-holarchy and its process. 
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Recommendations for Future Work 

We will look at three potential extensions of work that can be applied to this 

study’s work on info-holarchies: (1) organization patternizers, (2) infomics, and (3) an 

info-holarchic simulation generator. 

Organization Patternizers 

Future work is planned in extending holographic virtual reality dashboard-cave 

displays and morphic-informaton computation to the real-time analysis of business 

processes and structures and their morphology and evolution.  Proposed web services are 

to be built for business portals that will house simulations for holographic dashboards 

depicting business dynamics.  Stereographic images will replace the 3-D holographic 

displays for these business performance patternizers.  Additional, the info-holarchy 

model will be applied to cases involving other natural organization or organism structures 

including anthropomorphic groups defined within cultural boundaries (i.e., minority 

groups and their evolution).  Financial networks and markets will be simulated based on 

various instantiations of info-holarchies.  Patternizers of these structures will then be used 

to observe potential bifurcations or crisis points.  Banking institutions and their respective 

policy spectrum will be incorporated into these models in order to observe potential 

hidden improprieties and created adaptive loopholes that may lead to great depression-

type meltdowns and 2008-type market collapses.   

Info-holarchy patternizers are posited to be generalizations to the (statistical) 

shape analysis of 2-D and 3-D geometric objects (Dryden & Mardia, 1998; Dryden, 

2004).  Patternizers are instead applied to the analysis of spacetime region objects as 
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depicted in the holographic-cave displays of organizations (i.e., particular classes of 

organization evolution histories take on shapes with similar boundary behavior, 

morphology, color dynamics, and other sensorial profiles).  This is a multidimensional 

generalized “shape” history.  Similar to transformations in conventional shape analysis, 

an organization pattern, p, can be classified by an equivalence class, ( )C p , where pattern 

evolution mappings, ( )
tT q pΦ → map class patterns, ( )q C p∈ to p and t

T G∈ is a time 

evolutional operator from a registration group, G (i.e., Euclidean similarities—

translations, dilations, scaling, isometry group, or affine group, etc) on the organization 

history pattern, p.  What depicts a morphogentic (shape) change is a mapping that 

transforms the overall evolution of an organization in an almost time-invariant manner, 

i.e., the original pattern can be recovered through a time evolutional transformation, *tT , 

such that ( )*( ), ( )shape t td T p T q ε< , where 0pε → ,as t → ∞ and 0p is the null pattern 

history—a pattern history with no activity, organizational dynamic, or movement and 

shaped is a generalized shape metric such as a Frechét metric modified to measure 

evolutions and use evolutions as distances.  

In this way, two organization evolutions can be compared by differentiating them 

by another evolutional lifecycle.  Organization patterns in a pattern class share 

asymptotically similar evolutional behavior (i.e. they share nearly the same asymptotic 

time-evolutional lifecycle histories where “nearly” means historically indistinguishable).  

It may be argued that all organization evolutions are distinguishable (not withstanding 
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historian amnesia or the chain of indirect history writing), hence the “asymptotically 

nearly” label. 

Information Holonics 

Recently a new field of study has emerged—connectomics, dedicated to the 

dynamic mapping of brain connectivity—the development of a complete synaptic 

connection map of the mammalian brain.  In this project, conventional fMRI technology 

is used to map the diffusion of water molecules in axons and the surrounding neuronal 

cellular structures (Lehrer, 2009; Walsh and Lichtman, 2003).  This process named 

diffusion spectrum imaging (DSI), holds the promise of more aptly mapping the 

dynamical structure of neural activity. Additionally, an ultra-thin slicer of brain tissue, 

named the automatic tape-collecting lathe ultramicrotome (ATLUM), will help dissect a 

brain more exquisitely.  These slices are subsequently pieced back together and 

microimaged using scanning electron microscopy.  Lichtman and his research team 

developed a colored map of neuron activity–the Brainbow, where a spectrum of colors is 

used to track down individual neuron dynamics.  This map led to the potential to follow 

individual neuronal and axonic development and evolution—one holy grail of 

neuroscience.   

While informatics is a term broadly used to cover the gambit of information 

sciences disciplines, a project involving the study of the evolution and dynamics of 

information in organisms and organizations, in the spirit of connectomics for brain 

connectivity and genomics for gene structures would be an interesting working 

framework for the info-holarchy.  The evolutionary informatics lab (EIL) is a project 
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initiated by Marks (2007) to study evolution via general informatics.  Unfortunately, it 

mainly contains intelligent design paradigms coauthored with Dembski (2001) which 

develop notions of conservation of information, low-probability events through a notion 

of specified complexity (SC) in evolution and the necessity of an intelligent interceptor 

rather than an evolutionary process to build life forms.  Nonetheless, conservation of 

information is violated in coevolving organizations Wolpert and Macready (2005) and 

SC is not clearly present in nature.  Other intelligent design paradigms such as 

irreducible complexity (IC) in Behe (1996) and a stricter form of IC from Berlinki (1998) 

are soundly refuted in Rosenhouse (2001) and by the overwhelming majority of relevant 

researchers in the complexity and biological sciences communities.  Some of EVL’s 

nonpeer reviewed content was subsequently removed from their published website (St. 

Amant, 2007, September 11).   

By contrast, in this study, the universally dynamic and evolvable nature of the 

info-holarchy, coupled with the intelligently adaptable nature of its processes, position 

information as a more diverse entity; a physically and scientifically anchored concept—

super-evolutional (higher-ordered or evolvable evolution) and grounded in information 

physics. Such a project could develop information patterns or patternizations for 

organization—a mapping of evolutional information patterns for prototype organizations, 

viewed through the fully engaged spectacle of virtual reality performance dashboard-

caves.  The “wiring” of organizations can then be conceptualized through the use of 

patternization in these enclosures.  The color schemes of Lichtman’s Brainbow are easily 

generalized to the sensorium of patterns (tactile, haptic, olfactory, auditory, visual 
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colormetrics, etc.) in an organization holographic dashboard-cave.  Current advances in 

moving 3-D holography and parallax (angled perspectives) technology are applicable to 

this dynamic rendition of viewing evolvable patterns in organization (Blanche, et al., 

2010).  In this tradition, one may form an info-holarchy broadly based project, labeled as 

information holonics—the study and visualization of the dynamics of information in 

general holarchic organization evolution.  Nature gravitates to holarchies and information 

forms nature. 

Info-holarchy Simulators 

Generic multiagent simulation software and modeling tools have been developed 

recently in which input parameters serve as seeds for generating complex adaptive 

systems.  Simulations from these environments are then compared with their natural 

complex systems counterparts in order to differentiate artifacts, match similarities, and 

form strategies for prediction.  The SeSAM (Shell for Simulated Agent Systems) was 

written and developed over a period of a decade to be a domain-independent simulator of 

adaptive multiagent system requiring no direct coding or heavy computational power 

(Klügl & Puppe, 1998).  Graphical modeling, animation, and agent-behavior can be 

parameterized to custom fit generic agent-based systems.  The info-holarchy possesses 

more complexity than the generic multiagent system because of the nature of its recursive 

holarchic structure, GTU lattice automaton structure and strategies through its quantum-

gravity dynamics.   

Here I propose modularizing a SeSAm-like environment for simulating info-

holarchies by the use of categories and subject descriptors, opening up more powerful 
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metaphors for nonAristotelian logic agent systems (da Silva & de Melo, 2008).  Software 

components are to be added to the SeSAm modular system through the use of general 

behavior classes for stimuli, user roles such as experimenters (modelers and/or analysts) 

and component designers (scientific software developers), agent properties (physical 

properties of generated particles and organizations), and more general agent objects such 

as individual agents versus environmental agents representing exogenous stimulator 

agents.  Different types of agent logic systems (i.e., quantum-like, GTU, deterministic, 

and super-correlative entangled systems) can be reused to simulate different types of 

info-holarchies or subholarchies.  The chosen software programming development 

system to complement SeSAm is the SimAgent Toolkit developed by academicians for 

general usage by philosophers, social scientists, physicists, cognitive scientists, biologists 

and other interested in emergent properties of CAMs (Sloman, 2010).  This system was 

chosen because of its modularity, LISP-like incremental compiler, free open source 

license, and extensibility for a variety of intelligent complex adaptive agent-based 

systems.  Human agent type reasoning can be utilized as the stimulus-reaction strategies 

for agents. 

Fundamentally, at the informaton level, combinations of bit information are 

channeled to and between other informatons based on GTU-type rules which generalize 

quantum probability and the relativistic effects from gravitons—purported to generate 

gravitational forces. Gravitons will abstractly be generated from informaton activity in a 

causaloid-type region.  Lattice cellular automata will then be a fundamental model to be 

simulated for the lowest level informaton activity.  Organization based on cascaded 
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informaton semiotic chaining follows in the tradition of cellular automata emergence, 

although the topological lattice structure lends complexity to the strategies of informaton 

groups and variably nested holarchies (subholarchies).  Simulations therefore will be 

modeled by fundamental Boolean cellular automata in informaton agent action space 

with topological lattice-generated GTU logic.  Since LQG spinfoams are lattice-like 

configurations, topological lattices encased with GTU logic can represent LQG more 

richly.  These components will be written as modularized agent actions. 

Informaton Physics 

The concept that the informaton model for information particles and fields was a 

calculus for constructing SM and hypothesized quantum gravity particles, such as 

gravitons, the Higgs boson, and other theoretical constructs was posited in this study, but 

was not developed in anything but an acute, metaphorical, and hypothetical manner.  

Without regard to experimental verification, since such verification would be beyond the 

scope of this abstract, the informaton model would serve as an effective theory for an 

information (entropic)-based physics.  These connections must be attempted in order to 

seriously comment any further on the role that information, as a universal entity, has in 

building reality.  The holographic principle, being the most ostensible and successful 

entropic idea in physics, must be correlated to the informaton in the small.  Topological 

lattice cellular automaton patterns need to be investigated for the physics of informaton 

dynamics.  In this respect, informatons should be considered as the smallest Planck-level 

inference machines, reduced to the GTU dynamics of simple information bits.   
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Finally, any representational theory of physical information at the theoretical bit 

and Planck levels, such as the informaton model, must be complementarily functional and 

informational (Chakravartty, 2009).  Informational here refers to the objective ability to 

adequately simulate and represent through theoretical models, the modes of reality of a 

real organization or object.  Functional refers to the subjective ability to use such 

representations for cognitive activities, i.e., inferencing. 

Concluding Remarks 

In this study, the info-holarchy and an accompanying generalized information 

theory were presented.  Applications extended to the representation of inference 

machines in general and business entites in particular.  With this framework, special 

general purposes displays, specifically, holographic performance virtual reality 

dashboard-caves—were designed to abstractly depict the evolutional behavior of business 

organizations. These displays were designed as an alternative to classical business 

analytics.  The implications for socioeconomic change include the introduction of novel 

ways of representing general information, its flow and organization in networks 

consisting of human actors, resources, and computational devices—prototypical 

information businesses.   

This representation could lead to a better and more realistic tool for broad 

prediction and modeling for business and societal evolution.  Long-tail probability and 

black swan phenomena may be better prognosticated through the use of patternization 

from such powerful displays of organization evolution because of the nature of the 

proposed info-holarchic design and their more natural representation of organic and 
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inorganic entities.  Finally, a novel computing model – info-holarchic computing - 

morphic computing wtih informatons, g-bits and higher-order mathematical objects, such 

as tensors, was presented.  This novel way of representing computation expands the 

possibilities of treating complex objects more naturally and directly.  Implications for 

more accurate and direct representation of real-world physical objects in businesses and 

general organization structures are anticipated by such computation models. 

In the end, the connection between and from a highly complex organizational 

model, the info-holarchy, emanated from seemingly arcane theories of causal reality:  (1) 

2+1 LQG spinfoams (and to a lesser degree 3+1 LQG spinfoams), (2) an abstraction of 

set theory—topoi, (3) a space-time causal-probabilistic framework—causaloids, (4) an 

information field theory that is essentially a general Bayesian statistical framework for 

physical fields, (5) a notion of general uncertainty that classifies quantum and other 

nonAristotelian logics, and (6) a bipartite model for abstract information particles—the 

informaton; to the realms of the seemingly deterministic course-grained living of 

anthropods—the information-laden and saturated organisms of our techno-socio-

economic sphere—businesses, appears far-fetched and overreaching.  This study’s 

contention is that the link between these two worlds of explanatory power is a unifying 

framework of information—at all scales: the known known, the known unknown, and the 

unknown unknown (although Secretary of Defense Rumsfield in 2002 was widely 

credited by the general media with this phraseology, it was first articulated by Furlong 

[1984]).  The often heard naïve mantra of “information is power,” while oversimplified 

and underserving to this cause, nonetheless points to the psychological leaning towards a 
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unifying framework for information that simultaneously usurps technology, physics, 

philosophy, and the human societal psyche. 

The theory of informatons leading to info-holarchies, as developed in this study, 

is a means towards representing the quantum 20 yes-no questions framework of Wheeler 

(1990).  Generalized information bits—our techno monads— exchanged in informaton 

lattices are quintessential ensembles of complex Boolean packets.  Their creation, 

whether it be from quantum entanglement and decoherence, generalizations of 

uncertainty, relativistic effects, or discrete quantum gravity from causaloid logic, create a 

chain of semiotic structures, leading to almost spooky answers to the as-of-yet unknown 

questions.   
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Appendix A: Field Theory and Feynman Path Histories 

 Two traditional methodologies that one utilizes to formulate and describe the 

physical state of nature are field (wave) and particle theories.  Field theories are used 

when the reductionist approach to detailing collectives of small particles becomes 

inconceivably hard.  The field method is used to statistically estimate the behavior of a 

large group of particles, each possessing many (infinite) degrees of freedom.  Successful 

field theories include quantum field (synthesis of quantum mechanics and special 

relativity) and electro-magnetic field theories.  In order to build a field theory for some 

phenomena, one must first formulate what the field represents.  A field normally 

represents a function that continuously takes values on a space-time (differentiable) 

manifold, say ),()( txtq φ= .   

Particles are represented by lattice or grid systems.  Fields use functions that 

represent statistical estimates of these lattice point values.  These lattice values may be 

quite general as they may represent scalars, vectors, tensors, and other operators.  

Secondly, fields need a measure of collective energy of the system so as to base an 

estimate of the field values on optimization of this system energy.  The Hamiltonian of a 

system is the likely candidate for this measure, but the energy value may be replaced by 

some other more generalized observable.  We mostly follow the instructive presentation 

by Maggiore (2006) for field theories.  The Hamiltonian of a system with classical 

trajectory function )(tq , as above, is defined as: 

 [ ]( , , ) ( , , )H p q t pq L t q q= −ɺ ɺ  (7.1) 
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where L is the Lagrangian, a measure of free energy or the difference between the kinetic 

and potential energy of a system at )(tq .  The Lagrangian is used in the action principle 

(Hamilton’s principle): if 

 [ ( )] ( , , )
j

i

t

t

S q t L t q q dt= ∫  (7.2) 

then ][)]([ext *qStqS
q

= , i.e., 0* =
∂
∂

qq

S
, describes the optimal path )(*

tq from 

it to jt and
q

qqtL
p

ɺ

ɺ

∂
∂

=
),,(

is the Legrendre transform of L.  S is a functional on the space of 

potential path trajectories q.  In quantum mechanics, the action principle must take into 

account all possible path trajectories, ,...),...( 1 nqqq = , from time 
it to jt and then apply 

Feynman’s path integral formulation, in the limit as ,∞→n  

 
1

1

[ ( , , ) ]( ) ( )

1 1( ) ( )
[( ,..., )] ... ...

t jn
j j ti

n
i i

i
L t q q dtq t q t

h
n n

q t q t
S q q e dq dq

∫
= ∫ ∫

ɺ
� �  (7.3) 

where ћ is the Planck constant.   

For space-time coordinates and in order to satisfy the Lorentz invariance of 

special relativity, the action functional will take on the form: 

 
4[ ] ( , )S q dtL d x µϕ ϕ= = ∂∫ ∫ �  (7.4) 

where ∫ ∂= ),(3 φφ µL� xdL is the Lagrangian density and φµ∂ is the spatial-temporal four-

vector derivative.  In order to quantize a classical field one must build operators, 

i
q and i

p which generalize the system’s time-space coordinates and momenta 

respectively.  Furthermore, using the Schrodinger wave equation constraints, 
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i
q and i

p commute via the relation ijji
ipq δ=],[ .  In the Heisenberg scenario, these 

operators depend on time and so the commutation relation holds true at equal time, that 

is: 

 3[ ( , ), ( , )] ( )t x t y i x yϕ δΠ = −  (7.5) 

where ),( ytΠ is the conjugate momenta and x is the spatial coordinate vector.  Also, 

0)],(),,()][,(),,([ =ΠΠ ytxtytxt φφ .   

A real field is now a hermitian operator as are the momenta coordinates, pa and 

†

pa in a plane wave solution to a real scalar field equation (Klein-Gordon equation).  The 

commutation relation generalizes to: 

 † 3 3[ , ] (2 ) ( )p pa a p qπ δ= −  (7.6) 

with 0],[ =qp aa and 0],[ =†

q

†

p aa .  If the particle system is isolated in a finite volume 

(infrared cutoff), 3
LV = , then qp

L
qp ,

3

3

2
)( δ

π
δ 







→− and so
qpVqp ,

33 )()2( δδπ →− .  

pa is interpreted as the particle destruction (annihilator) operator and †

pa as the particle 

creation operator.   

In quantum ket-bra notation, 00| =pa , i.e., the vacuum state 0| (empty, zero 

energy state) of the quantum system, is annihilated by all destruction operators, pa .  The 

Hamiltonian is written in terms of these operators as 

                         

⌡

⌠







 += ],[
2

1

)2( 3

3
†

ppp

†

pp
aaaaE

dp
H

π                                     (7.7)
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where 22 mpEp ++= and m the mass.  H may be simplified applying an ultraviolet 

cutoff, Λ<p in the integration to prevent divergence and using a finite volume of 

integration as before.  Similar developments for fields with operators and Hamiltonians 

can be done for the more complicated complex scale fields (antiparticles), Dirac fields 

(spin ½ systems), Weyl fields (massless particles), electromagnetic fields, string fields, 

and D-brane fields.  We consider an analogous field development for general information 

signals and flow directives. 

 In the above consideration was the quantization of free fields, i.e., those without 

interaction with background energy.  The interaction of large particle systems and their 

field equivalents must be addressed to develop a full field theory.  In this way, the 

Hamiltonian of a system resumes the central role.  The full field Hamiltonian will be 

written as the sum of the free field Hamiltonian and interaction Hamiltonian: 

 0 IH H H= +  (7.8) 

Physically, 0HH I << and consequently is relevant mostly for weak coupling systems.  

The lagrangian,
ILLL += 0  that corresponds to the Hamiltonian H, in general, dictates 

very complicated field solutions, ),( xtφ .  The method of perturbative expansive in field 

theories attempts to relate the full field solution ),( xtφ to the field ),( xtIφ whose time 

evolution is determined by 0H .  More simply, ),( xtIφ is defined as: 

 0 0 0 0( ) ( )
0( , ) ( , )iH t t iH t t

I I
t x e t x eϕ ϕ− − −=  (7.9) 

It is a free field and as such can be expanded as: 
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 ( )
3
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3
( , )

(2 ) 2
ipx ipx

I p p
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dp
t x a e a e

E
ϕ

π
−

⌠



⌡

= +  (7.10) 

If we denote )()(
0

0000),( ttiHttiH
eettU

−−−≡ to be the time evolution operator then one can 

write the full field solution as: 

 
†

0 0 0( , ) ( , ) ( , ) ( , )It x U t t t x U t tϕ ϕ=  (7.11) 

The corresponding Hamiltonian is: 

 0 0 0 0( ) ( )( ) iH t t iH t t

I IH t e H e
− − −=  (7.12) 

Now define the n-point Green’s function: 

 1 1( ,..., ) 0 | { ( )... ( )} | 0n nG x x T x xϕ ϕ=  (7.13) 

where 

 
0 0( ) ( ) if y ,

{ ( ) ( )}
( ) ( ) otherwise

x y x
T x y

y x

ϕ ϕ
ϕ ϕ

ϕ ϕ

>
= 


 (7.14) 

is the time-ordered product (T-product) of two fields.   

The computation of the n-point Green’s function, 0|)()...(|0 1 nxx φφ is then 

tantamount to computing a general solution for ),( xtφ .  Instead, one computes the time 

ordered version, 0|)}()...({|0 1 nxxT φφ .  This term is called the Feynman propagator for 

the field solution of ),( xtφ .  A very ingenious graphical shorthand was devised by 

Feynman so that categories of solutions using the propagator could be drawn.  These are 

called Feynman diagrams and they follow a certain rule set.  They are as follows: 

(1) Draw all connected graphs corresponding to the initial and final states.  The 

number of lines that meet at each vertex is determined by the interaction term so 
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that in 3-space solutions there will be 3 lines, etc.  Disconnected graphs to not 

contribute to any interaction. 

(2) External lines that connected to others are treated as a pole factor and can be 

omitted from the interaction part of the graph (external leg amputation). 

(3) In the solution computation there is a Dirac delta operator that imposes an energy-

momentum conservation and these can nonredundantly be retrieved from a matrix 

element of 
mn kkiTpp ...||... 11 , where ISiT −= , and S is the S-matrix operator 

defined as the time limiting evolution operator 
)( 0

0

lim ttiH

tt
eS

−−

∞→−
= where H is the 

second quantized Hamiltonian of the field.  The second quantized system 

describes a quantum state basis in terms of the number of particles occupying a 

certain state, the so-called occupation number. 

(4) Energy-momentum conservation is imposed separately at each vertex 

(5) To each vertex, associate a factor –i times the coupling constant, which is the 

relative coupling of the free and interaction Hamiltonians in the full Hamiltonian. 

(6) To each internal line, associate a propagator taking on the value of the conserved 

4-space momentum. 

(7) A combinatorial factor, 
!

1

n
, that combines the number of equivalent contractions 

is associated with the coupling constant. 

 

 

 



 

 

Appendix B: Causaloids, Quantum Gravity, and Information 

In this review, causaloids will be operationally constructed as a potential means of 

building a physical theory encompassing both the probabilistic calculus of quantum 

theory (QT) and the indefinite causal structure of general relativity (GR).  The treatise 

from Lucien Hardy in a series of papers will be followed closely in this discussion 

(Hardy, 2005, 2007, 2008, 2008b).  Causaloids are an attempt at building a framework 

for construction of a mathematical physical theory that correlates with recorded data, 

while handling situations when an indefinite causal structure is present or when a time 

sequential evolution is not.  In GR, causal structure is dynamic because of the nature of 

the spacetime metric and its dependence on the gravitational force from the distribution 

of mass.  In QT, if time cannot be handled sequentially in the evolution equations, 

quantum uncertainty ensues.  Any theory of quantum gravity (QG) must then, in all 

likelihood, be capable of handling indefinite causal structures while retaining a consistent 

probabilistic calculus.  

To this end, consider two spacetime regions in the universe given by R1 and R2 

which are spatio-temporally disconnected.  One would like to posit a probabilistic 

statement about the region R1 conditional on information from R2 .  The current 

approaches to QG via path histories, such as LQG spinfoams, M-Theory, evolutional 

equations, or local infinitesimal changes via differential equations fall short in this 

scenario because of the disconnect in spacetime probabilities.  Spacelike separate regions 

dictate that correlational operators should be tensor products, A B⊗ whereas, temporal-

sequential regions should use direct products, AB .  For the causaloid formalism, a third 
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kind of product, called the question mark product will be introduced.  It is given by the 

notation, [ ]?D B C DCB=  where C is a causal switch operator that indicates either the 

tensor ⊗ or direct product (blank) depending on the causal structure of the regions.  Note 

that ? remains a linear operator.  Which product to use is therefore dictated by the causal 

structure of 1 2R R∪ .  In the case of probabilistic theories, such as quantum probability, 

with adjacent causality, a reduction in the information needed to infer the state of 

compound systems is present due to correlation relationships.  This is referred to as 

second 1evel physical compression.  The fundamental question that causaloids attempt to 

answer are the probabilistic propositions of the form: 

 
1 1 2 2

( | , , )R R R Rp X F X F  (8.1) 

where
iRX is an observed measurement (observable) of a physical entity  made in Ri 

and
iRF is some action performed in Ri., i.e., some control parameterization of the 

measurement device.   

A topological assumption is made about spacetime regions R.  Each region R may 

consist of the union of many elementary regions and composite regions consisting of 

more than two elementary regions themselves,{ }iR .  An elementary region in spacetime 

is a simple region that may not be operationally reduced in terms of the measurement 

devices.  Let ϒ denote the space of elementary regions in a spacetime universe.  For the 

purposes of this paper, ϒ may be planck-scale cells or pixels in a discrete LQG-spinfoam 

or planck-scale computer (PSC).  To standardize operations on ϒ , attach to each region 

R, a set of vectors (operators), ( , ) ( )
R Rx Fr R and define the causaloid product, Λ⊗ by: 
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 ( , ) ( , ) ( , )( ) ( ) ( )
R R R R R R R Ri i i j i i j i

X X F F i j X F i X F jr R R r R r RΛ
∪ ∪ ∪ = ⊗  (8.2) 

For a composite region, i
i

R R=∪ , through the causaloid product, Λ⊗ , the r vectors of the 

elementary regions would built the r vectors for the composite.  Crucially, 

1 1 2 2
( | , , )R R R Rp X F X F is well-defined ⇔ ||v u where: 

 

( , ) ( , )

( , ) ( , )

( ) ( )

( ) ( )

R R R Ri i j j

R R R Ri i j j

R j

X F i X F j

Y F i X F j

Y

v r R r R

u r R r R

Λ

Λ

≡ ⊗

≡ ⊗∑  (8.3) 

and the sum is over all possible observations
jRY made in Ri, consistent with the action

iRF .  

Here, 

 
1 1 2 2

( | , , )
R R R R

v
p X F X F

u
=  (8.4) 

Now consider the collection of data that will be utilized to form a probability 

statement about the regions.  Let the data be a collection of triplets ( , , )x xx F s , where x is 

the location of the observable, Fx is a parameterization (knob control setting) of the 

measurement operator (apparatus), and sx is the outcome of the measurement.  Next, 

consider a temporal manifestation of data collection via a series of probes in space.  Let 

the quadruple { }( ){ },
, , ,

,
, , , ,n m

i n i i n x n x
i n

d t t n F s= be the collection of data made by probe n at 

time ti of the observable at location x with outcome sn,x, using controls Fn,x.  The series 

{ },n m

it represent the time delays seen by probe n of the results from m other probes.  For 

each time slot ti and probe, n, di,n is recorded.  At the end of the experiment, the series 
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{ }, ,
, 0,1,...,

i n i n
d i N= would have been recorded.  Now consider a repeated experiment in 

which several controls,{ }
,

, 1,2,...,
n x

eF e E=  are used where E is the number of experiments 

performed.  This would be cosmologically problematic, but there are viable alternative 

setups to this thought experiment.  Before showing this, we procede to define the 

structure of a causaloid which will determine the causaloid product Λ⊗ and r vectors for 

regions.  The series of data, { }, ,
, 0,1,...,

i n i n
d i N= , which Hardy refers to as card stacks, 

one card per ,i nd , is divided into those which are consistent with a particular 

parameterization, F.  For simplicity, this subset of cards is denoted by F.  For any 

particular run of the experiment, say X, then X F V⊂ ⊂ where V denotes all possible 

cards (experiments).   

Denote R
 to be the region specified by the set of cards in V consistent with the 

condition x ∈ 
 (measurements in 
 ).  Let Rx be the elementary region consisting only of 

the cards in V with x.  Regions are then spacetime entites where local choices for 

measurement (action) are taken.  With this understanding, the term RX
�
means X R�∩ , 

that is, the cards from a run stack X that belong to the region R
 .  Define the procedure or 

action 
RF F R=


 
∩ , as the cards from F that belong to R
 .  The pair ( , )R RX F

 


now 

defines the measurement result and action taking place in the region R
 .  For notation 

sake, one can label the observations taking place in R
 as 
RY Y R=


 
∩ .  One now returns 

to the fundamental problem of calculating the probabilistic propositions given by (8.1).  

Since this is a probabilistic statement, one may inject a Fisherian (frequentist), 
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Kolmogorovian (axiomatic calculus), Bayesian (conditioning calculus), or other notions 

of probability calculus in these definitions over regions.  The point of departure for this 

paper would be to inject a more general approach to intuition and information transfer, 

that is, a notion of generalized fuzzy logic from GTU (Zadeh, 2005).  For the purpose of 

brevity in this review, the more powerful version of a causaloid, the universal causaloid 

will be constructed here.  In this particular version of a causaloid framework, repeating 

experiments will not be necessary for the inference needed to calculate probabilistic 

propositions. 

In classical statistical approaches, repeating experiments are the calculus for 

constructing robust estimators of the parameters of the underlying probability densities or 

constructs of the phenomena under investigated.  However, in the environment of the 

universe, resetting the clock to repeat the experiment of the probing bodies illustrated 

before as the means of data collection is problematic.  In this review of causoloids, two 

categories will be viewed.  The first will be with respect to repeated trials of 

measurements.  The second will be a notion of universal causaloids where repeated 

experiments are not taken.  Instead a larger deck of observations will be made and the 

metric for measuring the truth of a probabilistic proposition will be changed to 

approximate truth.  The first kind of causaloid will be reviewed first.  Consider two 

composite regions of spacetime, R1 and R2 with corresponding experiment controls 

(procedures), F1 and F2.  Probabilistic statements (propositions) of the form: 

 2 1 2 1( | , , )p Y Y F F  (8.5) 



 

 

440

will be the center of inquiry for causaloid frameworks.  This is simply the probability of 

observing the outcome Y2 using procedure F2 in region R2 given that Y1 was observed 

using F1 in region R1.  Statistically, this is a likelihood function.  However, because the 

regions involved may be spatio-temporally vastly separated with no ordered or connected 

causal structure, its calculation would not be well defined.  A deeper and more general 

formulation must be developed for such physical cases.  One must then find if a 

proposition is well defined (w.d.) and if so, find out how to calculate it.   

Consider a sufficiently large region, R covering most of V.  Next, assume that 

some C is a universal condition on the procedures, \V RF  and outcomes, \V RY  respectively 

in the region, \V R such that the probabilities, ( | , )R Rp Y F C are w.d.  This guarantees the 

existence of these likelihoods in a sufficiently large portion of the computable universe.  

Assuming the existence of C, the likelihood functions will simply be abbreviated 

as ( | )R Rp Y F and are w.d.   Applying reductionism to this large region, three kinds of 

physical compressions will be defined that will help in forming the calculations for the 

likelihood computations.  First level compression will apply to single regions.  Second 

level compression will apply to composite regions.  Finally, third level compression will 

be applied to matrix constructs that are manifested out of calculations pertaining to first 

and second compressions.   Define a shorthand for likelihoods, using the notation, 

1 11 ( , )R RY Fα = for each possible pair in the region R1: 

 1 1

1 1 1 1 1\ \( | )R R R R R Rp p Y Y F F
α α

α = ∪ ∪  (8.6) 
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In a physical theory that is governed in part by a probability calculus, the set of 

possible
1

pα can be reduced in size by relations, so that a minimal vector of 
1

pα suffices in 

expressing itself and without loss of generality, in a linear relationship, 

 
1 1 1 1( ) ( )p r R p Rα α= ⋅  (8.7) 

where the state vector, 1( )p R is given by a minimal index set, 1Ω : 

 1 1

.

.

( ) ,  

.

.

il i
pp R l

 
 
 
 = ∈ Ω
 
 
 
 

 (8.8) 

1Ω is referred to as the fudicial set of measurement outcomes. Since in a probability 

manifold, probabilities are linear, a linear relationship in the above compression is most 

efficient. 1Ω may not be unique in general, but since it defines a minimal set, there exist a 

set of  1Ω linearly independent states in p .  The first level compression for region R1 is 

then represented by the matrix: 

 ( )1 1

1 i

l

l
r

α
αΛ ≡  (8.9) 

where 1

il
r

α is the li
th element of the vector 

1
rα .  Compression in the matrix 1

1

l

αΛ is 

manifested by the degree of rectangularity (lack of squareness), a flattening of the matrix. 

 Second level compression is shown for composite regions.  Consider two regions 

R1 and R2 .Form the composite region, 1 2R R∪ and express its state: 
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 1 2 12

.

.

( ) ,  

.

.

i jk k i j
pp R R k k

 
 
 
 = ∈ Ω
 
 
 
 

∪  (8.10) 

It has been shown that the second level fiducial set, 12Ω can be chosen such that 

12 1 2  (cartesian product)Ω ⊆ Ω × Ω .  Further, one can express the likelihoods as: 

 

( ) ( )

( )

1 2 1 2

1 2

1 2

1 2 1 2

1 2

i j i j

i

i j i j

i

l l l l

l l

l l l l

l l

p r R R p R R

r r p

r r r p R R

α α α α

α α

α α

= ⋅

=

= ⋅

∑

∑

∪ ∪

∪

 (8.11) 

Then the following must hold: 

 ( ) ( )1 2

1 2 1 2 1 2i j i j

i j

l l l l

l l

r R R r r r R R
α α

α α =∑∪ ∪  (8.12) 

since there exist a spanning set of linearly independent state elements in ( )1 2p R R∪ .   

Now define the matrix representation for second level compression of 1 2R R∪ .  

Let 

 ( )1 2 1 2

i j i j

k k l l

l l k k
r rΛ =  (8.13) 

where 1 2

i j

l l

k k
r r is the th

i jk k element of the vector 
i jl lr .  One can then express these 

components as: 

 1 2 1 2 i j

i j i j i j

i j

k k

k k l l l l

l l

r r r
α α α α= Λ∑  (8.14) 
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and in this way calculate the likelihoods for the composite region from those of each of 

its constituent component regions.  This is the second level compression above and 

beyond first level compression of simple regions for the case of a composite region.  One 

using this definition of second level compression to define the causaloid product, Λ⊗ : 

 ( ) ( ) ( )
1 2 1 21 2 1 2r R R r R r Rα α α α

Λ= ⊗∪  (8.15) 

Because this definition generalizes completely to higher level composite regions, the 

second level compression matrices are defined analogously for n-region composites by: 

 1 2

1 2

...
...

n

n

k k k

l l lΛ  (8.16) 

Now consider a master matrix that consists of all levels of lambda matrices for 

elementary regions, Rx, for a set x, where
R
 is the set of x in the region R: 

 

1 1

1 2

1 2

1 2 3

1 2 3

1

1 2

1 2 3

,

, ,

. ......................

. ......................

x

x x

x x

x x x

x x x

l x R

k k

l l R

k k k

l l l R

x

x x

x x x

α Λ ∀ ∈
 
 Λ ∀ ∈
 
 Λ ∀ ∈
 
 
 
 
 








  (8.17) 

In a consistent probabilistic formalism for a phsyical theory, these Λ -matrices will in 

turn have a relationship among each other.  These relationships, along with a rule set for 

calculating other Λ -matrices based on these relationships, can be expressed as a set of 

action operators, a .  Let ΩΛ denote this reduced set of Λ -matrices based on the 

relationship reductions.  Then the causaloid is denoted by the pair ( ), aΩΛ .  Reductions 

by the third level of physical compression are manifested by identities that express higher 
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order Λ -matrices in terms of lower order ones.  Examples of Λ -matrix set reductions are 

in the following two scenarios: 

(1) When the fiducial set for the composite region is separable (expressable) into (as) 

a cartesian product of the fiducial sets of the components, i.e. 

                 
( 1) ( 2)1 2 3 1 2 3

1 1 ( 1)1 2 3 1 2 3 ( 1) ( 2)

...... ...

... ... ... ... ... ... when x m x xx x x x x x x x m nn m

x x x x x x x x x x x n m m nn m m m n

k k kk k k k k k k k

l l l l l l l l l l l x x x x x x

+ +

++ +
Λ = Λ Λ Ω = Ω ×Ω  (8.18) 

(2) When higher order Λ -matrices can be computed based on pairwise 2-index  Λ -

matrices: 

     

'
( 1)1 2 3 1 2

'
1 2 3 ( 1)21' '

2 23 1 ( 1)

...

... 12... 12 ( 1)
,...,

...  when ...

.........................

x x x x x x n nn

x x x x nn n

n n n

k k k k k k k k

l l l l l l n n nl k
k k

ij i j

−

−

− −

−
∈Ω ∈Ω

Λ = Λ Λ Ω = Ω × ×Ω

Ω = Ω × Ω

∑

 (8.19) 

Next, consider the case where ensembles of experiments are limited or were one 

large data set card is instead collected.  One considers this case because effects are not 

preserved as these repeated experiment processes are not invariably reversible, so that an 

experiment performed later would be run under very different conditions regardless of 

how hard one tries to preserve the cosmological laboratory.  So, one considers running 

experiments in one long consecutive batch.  However, this taxes the statistical theory 

behind any of the probability propositions arises from such an experiment.  To overcome 

this, consider the following methodology.  Let A be a proposition concerning the data that 

will be collected in an experiment.  To this proposition associate a vector, rA, as before 

with regions.  Next, consider a complete sequence of mutually exclusive propositions, 

{ } 1,...,i i M
A

=
, where 

...
,

CC
C

iA A =   is the ith complementation of A. 
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 Define the approximating vector, 
1

i

M
I

A A A

i

r r r
=

= +∑ .  Declare the assertion:  

 ( )( ) has a n approximately  true value I

A AA r rε⇔ ≈  (8.20) 

where the equivalence ε≈ is modulo an approximation to within a thresholdε to be made 

precise later.  This also points to the inevitability that experiments may never concisely 

estimate parameters.  Now consider the vectors given by the application of the causaloid 

product Λ⊗ : 

 
1 1 2 2( , ) ( , )n n n nn X F X Fr r rΛ≡ ⊗  (8.21) 

where 1 2 ,  1,..., ,  1n n nR R R n N N= = >>∪  .  Next, define the vector: 

 
1 1 2 2

1 1

( , ) ( , )n n n n

n

I

n X F X F

Y F

r r r
Λ

⊂

≡ ⊗∑  (8.22) 

Now define the difference vector, I

n n nr r r= − and assume the condition 

,  I

n nr pr n= ∀ .  In this way,
nr plays the role of v and I

nr that of u.  To get to a calculation of 

the probability proposition, one now considers the vector definition: 

 ( ) ( )
( ) ( )

A n n
n S n S

p p N S p p N

r r r
Λ ΛΛ

∈ ∈
−∆ < < +∆

≡ ⊗ ⊗ ⊗∑  (8.23) 

A translation of this vector is the following: 
Ar corresponds to the property that pN out of 

N regions Rn have the result 
nRX to within a threshold of pN±∆ .  One now has the 

condition, I I

A n
n

r r
Λ≡ ⊗ .  Taking the definition ,  I

n nr pr n= ∀ , and using an approximation 

to the binomial distribution, one can rewrite 
Ar : 
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( ) ( )

1
(1 ) 1n N n I I

A A A

p p N S p p N

r p p r O r
p N

−

−∆ < < +∆

    
= − ≈ −    

∆       
∑  (8.24) 

Hence, 
1

1A

I

A

r
O

r p N

 
≈ −  

∆ 
.  For a given threshold 0ε > , 1 ,  A

I

A

r
N N

r
εε< − ∀ > for a 

sufficiently large Nε .  In this respect, the equivalence, ε≈ occurs between 
Ar and I

Ar and 

the truthfulnessε −  of A.  The formal definition of a universal causaloid follows: 

Definition: (Universal Causaloid).  The universal causaloid for a region, R, made 

up of elementary regions { }xR , when it exists is defined as the entity represented by a 

mathematical object which may be utilized to calculate the vectors, rA for a proposition A 

concerning the data collected in{ }xR such that if A is truthfulnessε − , one has that 

I

A Ar rε≈ where 
1

i

M
I

A A A

i

r r r
=

= +∑ and{ } 1,...,i i M
A

=
is a complete set of mutually exclusive 

propositions where 
...

,
CC

C

iA A =   is the complementation i times of A. 

By using the symmetries inherent in classical probability (CprobT) and quantum 

theory (QT), the calculation of the truthfulnessε − can be accomplished without repeated 

experiments within those paradigms.  The universal causaloid is seen as corresponding to 

the entire history of the universe that is essential to calculations pertinent to cosmological 

constructs without the enormity of its computation through these more 

compact truthfulnessε − tests for propositions.  An assumption that would further 

simplify the computations involved with universal causaloids is the principle of 

counterfactual indifference: 
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Definition. (Principle of Counterfactual Indifference). The principle of 

counterfactual indifference is the condition that the probability of an event E does not 

depend on the action that would have been implemented had the 

complement CE happened instead if one conditions on cases where CE did not happen 

modulo that the measurement device did not alter the state of the observed entity in any 

large way (low key measurement). 

Applying this condition to the case of r vectors, 
1 1 1 1

( , ) ( , )CX F X F
r r= where 

1 1 1, C
X F F⊆ since when one applies the procedure actions F1 and 1

C
F , one does the same 

thing when the same outcomes, X1 are observed by counterfactual indifference.  The 

universal causaloid is a macroscopic approach to physical theory construction.  By 

combining this attribute with the promise of the discrete computational models of LQG at 

the planck scale, despite the unknown emergence of a 3+1 dimensional spacetime at that 

microscopic level, an emergent property of QG may be mended there.  This is the 

proposal of this paper, utilizing a generalization to the probabilistic causaloid and the 

LQG-spinfoam inspired computation at the planck-scale pixels of a surface for describing 

abstract physically conformal information.  

It has been shown that a version of a quantum (classical) computer can be setup 

using the causaloid formalism by considering an abstract computer with generalized gates 

that is a subset of all possible gates in a pseudo-lattice of pairwise interacting qubits.  Call 

this pseudo-lattice of pairwise interacting qubits, 
LΘ .  Call the universe set of gates 

possible, SI.  In a practical computer, the set of gates is restricted to a finite number N.   
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Let { }
1

N

i Ii
S s S

=
≡ ⊂ be the set of gates in a computer.  Define a causaloid on the set 

of pairwise interacting qubits, 
SΛ .  The triple ( ), ,L S SΘ Λ is then considered a causaloid-

induced computer on a pseudo-lattice of pairwise interacting qubits, 
LΘ , with quantum 

gates S.  Now consider the class of causaloid-induced computers with number of gates 

bounded above by M.  Call this class, MC
Λ .  A universal computer in this class is one that 

can simulate all other computers in MC
Λ .  Here it should be pointed out that an important 

distinction between a QG computer and a quantum (classical) computer is that it is not a 

step computer, i.e., no sequential time steps are realized for computation.  This is so 

because of the indefinite causal structure in a QG environment and subsequent computer. 

 

Figure 31. QG computer pseudo-lattice 

 



 

 

449

Each node of the pseudo-lattice represents a quantum gate, 
kx , where a particular 

gate operator, s is chosen at interaction time between two input qubit information 

channels,  and i jq q .  Upon interaction and gate operation chosen, an output, a, is 

produced via measurement and transformation operators.  The triple, ( ), ,kx s a is recorded 

at the gate.  Associated with this record is the vector, 
xk

rα .  The two separate qubit 

channel inputs can then be separated as 
k i jx x xl l l= where

ixl and 
jxl mark the fiducial 

measurements on qubits qi and qi respectively.  These operations and the pseudo-lattice 

constitute a causaloid diagram for a quantum computer.  The causaloid for the pairwise 

interacting qubit computer model can be written as: 

 { } { }( ),  , ,   adjacent , ;x x x xi j i w

x x xk i j

l l k k

k l l k w
x x x RαΛ = Λ ∀ Λ ∀  (8.25) 

where R is the set of rules (actions) constructing the causaloid qubit diagram (pairwise 

interacting qubits, nodes with gate operations as defined above) and the clumping 

operations given by the categories in (8.18) and (8.19) for grouping  nonsequential nodes 

for any set in the set of all configurations of qubit nodes, Ω .  State evolution can be 

simlulated by considering nested spacetime regions, ,  0,...,tR t T= where: 

 0 1 ... TR R R R= ⊃ ⊃ ⊃ = ∅  (8.26) 

Interprete the region Rt as what happens in R after time t.  Now consider the state 

vector, ( ) ( )tp t p R= at time t for the region Rt .  Construct the evolution equation as: 

 ( ), 1( 1) ( )t tp t G p t++ =  (8.27) 
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where , 1t tG +  is the evolution operator that depends on the output,-procedure pair, 

( )1 \ 1
\ ,

t t R Rt t
R RY F

+ +
on the complementary region, \ tR R .  By using this technique of nested 

regions, one simulates a time evolution without using a physical time parameter. 

QG computers are conceivable and plausible if one can show that a GR computer 

is possible.  Nonetheless, for the sake of completeness, a GR computer should be 

demonstratable using a causaloid formalism as have QT and classical computers above.  

Possible GR compatible computers may utilize gravitational waves and have been shown 

to be plausible Church-Turing-Deutsch physically-based computers leading to 

hypercomputability by utilizing supertasks (Pitowsky, 1990; Etesi & Nemeti, 2002; 

Shagrir & Pitowsky, 2003).  Hypercomputability is the condition in a computing device 

that permits one to compute functions that cannot be computed by a Turing machine.  

These GR hypercomputers utilize a special spacetime structure called Malament-Hogarth 

spacetime. 

Definition (Malamert-Hogarth spacetime).  A pair ( ), g� , where � is a 

connected 4-dim Hausdorff C
∞ manifold and g is a Lorentz metric, is called a Malamert-

Hogarth spacetime if ∃a timelike half-curve 1γ ⊂ � and a point 

1

  p d
γ

τ∈ ∋ = ∞∫� and 1 ( )I pγ −⊂ where ( )I γ− denotes the set of past events ofγ . 

In an Malamert-Hogarth (M-H) spacetime ( ), g�  there is a future-directed 

timelike curve 2γ that starts at a point q that is in the chronological past of p (i.e., 

( )q I p
−∈ ) and ends at p.  So, 

2 ( , )q p

d
γ

τ < ∞∫ .  Furthermore, in an M-H spacetime, events 
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are not related to each other causally, that is, an M-H spacetime is not globally hyperbolic 

and so, has an indefinite causal structure.  Two other powerful classes of GR computers 

will be reviewed that are capable of computing general recursive functions and are more 

feasible cosmologically. 

Definition. (past temporal string). Consider the string that is formed from a 

collection of nonintersecting open regions, ( ),i g∈
 � , an M-H spacetime, such that: (i) 

1,  ( )i Ii I
−

+∀ ⊂
 
 , and (ii) ,  ( )iq i I q
−∃ ∈ ∋ ∀ ⊂� 
 .  Such strings are called past temporal 

strings (PTS). 

PTSs construct complex spacetimes referred to as arithmetic-sentence-deciding 

spacetimes of order n or SADn.  A first order SAD, denoted by SAD1, is a Turing Machine 

(TM) that travels towards an event and is in the event’s past spacetime cone.  SAD1s can 

be stacked on top of each of spacio-temporally to construct higher order SADn. 

Result. A SAD1 can decide 1-quantifier arithmetic, that is, any relation of the form 

( ) ( , ) or ( , ),S z xR x z xR x z= ∃ ∀ where R is recursive. 

Definition. If ( ), g� is a M-H spacetime, then it is a SAD1 spacetime.  If 

( ), g� admits strings of SADn-1 then it is a SADn spacetime. 

SADn spacetimes construct hierarchies of spacetimes as in the following sequence: 

 1 -  -  - .... -  - ... - nFTM TM SAD SAD AD  (8.28) 

where an AD is an arithmetic-deciding computer which is a computer that can compute 

exactly 0ℵ functions. 
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Now consider GR computers that can perform supertasks in the vicinity of back 

holes.  Rotating black holes that are not charged are classified as Kerr black holes.If they 

are charged then they are called Kerr-Newman black holes.  The exterior of black holes 

that are charged form a spacetime called a Kerr-Newman spacetime and are types of M-H 

spacetimes.  Therefore, an abstraction for a GR computer utilizing the effects near a black 

hole is plausible.  To this end, a scenario is built where two timelike curves, ( , )P Oγ γ are 

traced respectively, for a computer traveling around the black hole in a stable orbit and an 

observer crossing the outer event horizon of the black hole, entering the inner horizon, 

but not continuing into a singularity.  Both computer and observer start from a point 

q ∈ � with  and P Oγ γ= ∞ < ∞ .   

The Malament-Hogarth event takes place at a point p on an orbit around the black 

hole.  The role of the computing device is to decide on the consistency of theorems of 

ZFC and informing the observer of such results.  Assume that a TM, labeled T, that is 

capable of enumerating all the theorems of ZFC exists and that the computing device P 

and observer O have a copy of it each.  Then if the observer, O, does not receive a signal 

from P, before it reaches p, then the ZFC is consistent.  Otherwise, if P receives a 

message before reaching p, then ZFC is inconsistent.  This class of GR computers near 

black holes are referred to as relativisitc ( ),O PG γ γ= computers (Syropoulos, 2008, pp. 

137-148).  

A similiar, but ideologically different class of black hole relativisitc computers is 

that proposed by Lloyd and Ng.  In this model, the entire black hole is considered as a 
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simple but ultimate computer with speed v  ops/bit/unit of time and with number of bits 

of storage memory, I, bounded from above according to (Ng & Lloyd, 2004): 

 
2 86 2

2

1
10 sec

p

Iv
t

−≤ ≈  (8.29) 

Taking this to its physical conclusion, the entire universe is considered a self-referential, 

self-constructing computer and as such, any physical device or thing is a computer 

(Lloyd, 2000; Lloyd, 2006a).  The seeds for a deterministic computing universe 

hypothesis were, of course, planted earlier by Zuse and others in the Zuse Thesis - the 

universe is a computer via deterministic cellular automaton (Schmidhuber, 1996; Zuse, 

1970).  More recently, Wolfram posits that if spacetime is discrete, cellular automaton 

model the universe and as such, are limited in their computation of things, but that 

everything is a computer of sorts (Wolfram, 2002) 

Regardless, it is still unknown how time behaves at the planck scale, posited to be 

fuzzy, at best, in the QG research arena, not withstanding several controversial 

experiments minimizing or challenging this effect (Lieu & Hillman, 2003).  Nonetheless, 

in a conceptual QG computer, the concept of separate space or time resources must be 

combined to reflect a new kind of singular spacetime resource measurement for showing 

computational rates and limitations.  As pointed out before, QG computers are nonstep 

devices. 
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Appendix C: Category and Topos Theory 

Consider an object � consisting of general objects, , , ,...A B C labeled as 

( )Ob � and maps or relations (sometimes referred more generally as arrows), , , ,...f g h , 

labeled as ( )Arr � , such that 

1. for each arrow ( )f Arr∈ � ,  two objects, ( ), ( ) ( )dom f cod f Ob∃ ∈ � such that f 

acts only on ( )dom f and maps only to ( )cod f , i.e., : ( ) ( )f dom f cod f→ , 

written as ( ) ( )
f

dom f A cod f B= → = , 

2. for each object ( )A Ob∈ � , an identity map, denoted by 1A exists such that 
1A

A A→  

is one such map from A to A, 

3. for each pair of maps, ( , ) in ( ) such thatf g Arr �
f g

A B C→ → , when objects 

, ,  and A B C exists, a composition map h g f= � exists, defined as
h

A C→ , 

4. if 
f

A B→ , then 1B
f f=� and 1

A
f f=� (identity laws), and 

5. if ,
f g h

A B C D→ → → then ( ) ( )h g f h g f=� � � � (associative law). 

Some consequences of this definition are (a) (1 ) (1 )
A A

dom cod A= = , (b) g f� is defined 

if ( ) ( )dom g cod f= , (c) ( ) ( )dom g f dom f=� , and (d) ( ) ( )dom g f cod g=� .  Label the 

pair of objects ( )Ob � and arrows ( )Arr � as � .  If � satisfying only condition 1 it is 

called a metagraph.  If in addition, � satisfies 2 then it is called a metacategory.   

Metacategories will be subject to the axioms of 3 and 4.  With some imagination, 

one can see the generality of metacategories.  For example, the metacategory of sets 
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consists of all sets and arrows are all functions with the usual identity and composition of 

functions defined in naïve set theory.  The metacategory of all groups consists of all 

groups G,H,K,… with arrows which are functions f from a set G to a set H defined so that 

:f G H→ is a homomorphisn of groups.  The metacategory of all topological or 

compact Hausdorff spaces each with the continuous functions as arrows (topologies can 

be defined by continuous maps) are two other examples. 

Definition. A category is a metacategory, � , interpreted within set theory, that is, 

the objects in a category is a set of objects, O and the arrows is a set A of arrows, together 

with the usual functions defined by 
dom

→ and
cod

→such that 
dom

cod

A O� . 

Definition. The set of all possible arrows from the object B to C in � , a category, 

is denoted as hom( , ) { |  in , ( ) , ( ) }B C f f dom f B cod f C= = =� , the set of its 

morphisms. 

The set hom( , )A A defines all endomaps, for all objects A in � , a category.  A 

special type of category is the monoid which is a category with exactly one object.  

Indeed, a category is a very general animal which can be described as a generalized 

mathematical object reflecting the rich structure of specialized mathematical structures 

used in known diverse mathematical and scientific endeavors.  In order to further develop 

the richness of categories, the definition of mapping between categories is given. 

To generalize the ideas of a null set and singleton subsets we define initial and 

terminal objects of a category � .  
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Definitions. An object 0 is initial in a category � if for every ( )A Ob∈ �  there is 

one and only one arrow : 0
A

f A→ in � .  Reversing the role of arrows, an object 1 is 

terminal in � if for every ( )A Ob∈ � there is one and only one arrow : 1
A

f A →  in � . 

Duality is a mathematical concept in which the roles of two objects engaged in a 

structural relationship are reversed.  In the general case of categories, which would 

generalize to dualities everywhere, we construct the definition: 

Definition. From a given category � , construct its dual or opposite 

category, op� in the following manner: 

( ) ( )op
Ob Ob=� �  and for each f ∈ � mapping A B→ , define the 

arrow op op
f ∈ � mapping B A→ .  The only arrows of op� are of these constructions.  The 

composition op op
f g� is defined precisely when f g� is and ( )op op op

f g g f=� � .  In 

addition, ( )op
f cod f=  and ( ) ( )op

cod f dom f= .  

The significance of duality in category theory is that if a statement Σ of category 

theory is held to be true then automatically the statement given by the opposite opΣ is true 

as well.  The conclusion is that this duality principle cuts in half the work to be done in a 

category or in category theory in general (Goldblatt, 2006, p.46).  One would like to 

generalize the concept of products and limits since with these constructionists theories 

can be built.  To this end define general diagrams and cones: 

Definition. Let D be a metagraph (diagram) with vertices { : }
i

d i I∈ for a 

category � .  A cone over D is a family of arrows { : }
if

iA d i I→ ∈ from A to objects in D 
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such that for any arrow 
ijf

i jd d→ in D, the diagram 

 

Figure 32. Category cone 
 

commutes.  The object A is called the vertex of the cone.  An arrow from a cone over 

D{ : }
Ai

f

iA d i I→ ∈ to another cone over D{ : }
Bi

f

iB d i I→ ∈ is a � -arrow
g

A B→ if the diagram 

 

Figure 33. Category-theoretic C-arrow 
 

commutes for each i I∈ .  If such an arrow g exists then the cone { : }
Ai

f

iA d i I→ ∈ factors 

through the cone{ : }
Bi

f

iB d i I→ ∈ .  The set of cones over D denoted by Cone(D) then form 

a category using this procedure.  One now gets to the definition of limits. 
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Definition. A limit for the diagram D is the terminal object of Cone(D).  The 

colimit of D is the terminal object of the cone, ( )opp
Cone D which is the cone defined over 

the dual category, op� .  

Definition. A category, � is said to be (finitely) complete or cocomplete if the 

limit or colimit of any finite diagram in � exists in � . 

A useful device for category manipulation is the pullback mechanism.  Formally, 

a pullback of a pair of arrows defined as 
f g

A C B→ ← in ( )Arr � with common codomain, 

C, is a limit in � for the diagram: 

 

Figure 34. Category-theoretic pullback operation 
 

where a cone for this diagram consists of a triplet of arrows ( ', ', )f g h in � such that the 

diagram: 
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Figure 35. Pullback cone 
 

commutes.  Using the definition of a universal cone and the commutivity of the above 

diagram, one can eliminate the arrow h and arrive at a more precise definition, 

Definition. A pullback of the pair of arrows
f g

A C B→ ← in ( )Arr � is a pair of 

arrows 
' 'g f

A D B→ ←  in ( )Arr � such that: 

(1) ' 'f g g f=� � in ( )Arr � , and 

(2) whenever
jh

A E B→ ← are a pair of arrows in ( )Arr � such that f h g j=� �  

then there is exactly one arrow in ( )Arr � :k E D→ such that 'h g k= � and 'j f k= � .  The 

diagram ( , , ', ')f g f g is called a pullback square (Goldblatt, 1984, p.63-64). 

Exponentiation is defined next.  Consider the category given by the usual sets of 

axiomatic set theory with set operations.  Denote this category by the label, SET.  If A and 

B are two sets in SET, let { : : }A
B f f A B= → denote the set of all functions (arrows) 

having domain A and codomain B.  A special arrow in SET will be associated with A
B , 

the evaluation arrow, : A
ev B A B× → with the assignment rule, (( , )) ( )ev f x f x= . 
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Definition. A category � has exponentiation if (a) it has a limit for any two arrows 

in ( )Arr � , and (b) if for any given objects , ( )A B Ob∈ � there exist an object, A
B and an 

arrow, ( )ev Arr∈ � , : A
ev B A B× → , referred to as an evaluation arrow, such that for 

any ( )C Ob∈ �  and ( )g Arr∈ � , :g C A B× → , there exist a unique 

arrow, ˆ ( )g Arr∈ � making the diagram: 

 

Figure 36. Categorical exponentiation 
 

commute, that is, the existence of a unique arrow, ĝ such that ˆ( 1 )
A

ev g g× =� . 

In order to compare two or more categories, a mechanism must exist that maps 

categories to each other.  The space of morphisms between two categories will now be 

defined. 

Definition. A functor, T is a morphism between two categories,  and � � , written 

as :T →� � in which ( )dom T = � and ( )cod T = � , which assigns to eachC ∈ � , an 

object ( )T C ∈ �  and an arrow associated with T, written, ar
T , that assigns to each arrow 

':  of f C C→ � an arrow ': ( ) ( ) of arT f T C T C→ � in such a way so that 

( )(1 ) 1  and ( ) ( ) ( )C T CT T g f T g T f= =� �  
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whenever, g f� is defined in C. 

 

Functors on categories must act on both objects and arrows of categories as 

above.  In this way a composition of functors, functor isomorphism, and a faithful functor 

can be defined to expand on the space of category functors and hence on the relations 

between categories. 

Definitions. (a) A functor :S T →� �� is a functor composition of functors S and 

T if 
T S

→ →� � � are functors between categories , , and � � � such that ( ( ))C S T C→  

and ( ( ))f S T f→ for objects C and arrows f of � . (b) A function :T →� � is a functor 

isomorphism between � and � if it is a bijection both on objects and arrows between 

� and � , i.e., if ∃a functor :S →� � for each functor T, such that 

S T T S Id= =� � where Id is the identity functor between � and � and 1
S T

−= is a two-

sided inverse functor.  (c) a functor :T →� �  is full when to every pair '( , )C C of 

objects in �  and every arrow : ( ) ( ')g T C T C→ of � , ∃ an arrow : 'f C C→ in �  

with ( )g T f= , and (d) a functor :T →� �  is faithful (an embedding) if to every pair 

'( , )C C of objects and every pair ( , )f g of parallel arrows (arrows with the same domain 

and codomain) in � , ( ) ( )T f T g f g= ⇒ = .  A consequence of these definitions is that 

compositions of faithful and full functors are again faithful and full respectively. 

Faithfulness and fullness are embedding features between categories in the 

following sense: if ( , ')C C is a pair of objects in � , the arrow of T, :
ar

T →� � assigns to 

each : 'f C C→ an arrow ( ) : ( ) ( ')
ar

T f T C T C→  so that a function is defined: 
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( , ') : hom( , ') hom( ( ), ( ')),   ( )C CT C C T C T C f T f→ →  

as a mapping of the set of arrows between C and C' to the set of arrows between T(C) and 

T(C'), then T is full when every such function ( , ')C CT is surjective and faithful when it is 

injective.  If T is both full and faithful, then every such ( , ')C CT is bijective, but not 

necessarily an isomorphism (MacLane, 1971, pp. 7-15).  Embeddings of categories 

naturally call upon a definition of subcategories or categories contained within other 

categories. 

Definitions. A subcategory �  of a category �  is a collection of objects and 

arrows of � that is closed under identities, domains and codomains, i.e., (a) if f is an 

arrow of � then it is an arrow of � and both ( )dom f and ( )cod f are objects of � , (b) for 

each object S in � , its identity arrow, 1
S is in � , and (c) for every pair of arrows 

( , )f g in � ,their composition, g f� is in � .  Consequently, � is also a category.  An 

injection map, :injT →� � � sending objects and arrows of � to itself in � is called the 

inclusion functor.  It is consequently faithful. � is called a full subcategory of � when 

injT� is full (MacLane, 1971, p.15). 

A useful example of a functor which will play an important role in mapping 

structures in a set-theoretic setting to a category-theoretic setting is the so-called forgetful 

functor denoted as :FOR C SET→ where SET is the category of ordinary sets in set 

theory and C is any mathematical system (category).  FOR strips off the extra structure 

attached to C and produces just the set objects of C as a new simply set category.  FOR 

essentially forgets any structure (arrow rules, etc.) that C may have had, i.e., for a 
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category � , if ( )A Ob∈ � , ( )
A

FOR A S=  where A
S is the strict set part of A 

and ( )FOR f f= for any ( )f Arr∈ � .Versions of partially forgetful functors have been 

presented such as the class introduced by Geroch (1985) in which a functor is partially 

forgetful if it strips a category down to the categorically nearest simpler category (i.e., 

nearest meaning being in the same category, but with less structure morphologically).  

These lesser structured categories may then be mapped back to the richer categories that 

were stripped down by free construction functors that would then reintroduce the original 

richer structure back.   

As an example, the Abelian group category, ABLGRP, can be stripped back 

entirely by FOR, but if we introduce a partially forgetful functor that just strips away 

commutivity, ANTICOM the group category, GRP is produced.  By applying a free 

construction functor, COM that reintroduces commutivity back into GRP, one obtains 

ABLGRP.  This will serve in producing a categorical chain of categories in which the 

repeated application of partially forgetful functors in combination with free construction 

functors will produce a family of categorically related structures and hence, a metachain 

for model-theories and their mathematical structures. 
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Figure 37. Categorification process 
 

A general way of defining a natural transformation of one functor to another in 

such a way that commutes between categories is through the following: 

Definition. For two functors, , :S T →� � , a natural transformation that maps S 

to T, denoted by : S Tτ → , is a function that assigns to an object C of � , an 

arrow : ( ) ( )
C

S C T Cτ → of � such that every arrow : 'f C C→ in � commutes in the 

following map diagram: 

 

Figure 38. Natural transformation 
 

The transformation, C
τ is called natural in C (MacLane, 1971, p.16).  The notion 
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of generalized categorical subsets, known as subobjects and the mechanism to find 

subobjects, a subobject classifier, will be discussed next. 

Definition. An arrow ( )f Arr∈ � , :f A B→ is called monic if for any parallel pair 

of arrows, , :g h C A→ in ( )Arr � f g f h g h= ⇒ =� � . 

Definitions. A subobject of an object, ( )D Ob∈ � is a monic arrow 

in ( )Arr � , :f A D→ ,with codomain D.  The set of all such subsets of D (if D is an 

ordinary set) is called the powerset of D, denoted by ( )D� or 2D . 

Ordinary set inclusion, ⊆  defines a partial ordering in ( )D� so 

that ( ( ), )D ⊆� become a poset and hence a category in which the role of arrows 

is   A B A B→ ⇔ ⊆ .  Inclusion arrows then become commutative, reflexive, and 

transitive between subobjects.  A generalization to 2D in any category is the set of power 

objects denoted as 2Ω where the universe of discourse generalizes the binary set {0,1} . 

Definition. A category, � with limits is said to have power objects if to each 

object, ( )A Ob∈ � , there are objects ( ) and AA ∈� , and  a monic arrow 

:  ( )A A A∈ ∈ → ×� , such that for any object ( )B Ob∈ � and relation map given 

by :r R B A→ × , there is exactly one arrow : ( )rf B → � � for which there is a pullback 

in � taking on the form 

 

 

 

 



 

 

466

 

 

Figure 39. Power object pullback 
 

A relation map is a map with domain consisting of a relation R, which is an object 

such that R A B⊆ × in which ( , ) ( )Rx y R y f x∈ ⇔ ∈ where :Rf A B→ is an arrow 

appropriately defined for the inclusion in R. 

Definition. In a category, � with terminal object 1, a subobject classifier for � is 

an object ( )ObΩ∈ � together with an arrow, :1true → Ω  that satisfies the following 

axiom: 

Ω -axiom.  For each monic arrow, :f A D→ , there is one and only one 

arrow, :f Dχ → Ω
 
such that the diagram: 
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Figure 40. Subobject classifier pullback square 
 

is a pullback square.  Here fχ is called the character of the monic arrow f (as a subobject 

of D), true is the arrow assigning a truth value of TRUE from the universe of discourse of 

truths, Ω , and ! is the composition arrow defined by 1 : 1ftrue f Aχ− →� � .  The arrow 

1
true

− simply maps the value TRUE in Ω  to the terminal object 1 in ( )Ob � . 

Enough structure has been defined to develop the formal definition of a Topos, 

which will serve as the template for a generalization to physical logic systems employed 

by information fields as defined in this dissertation. 

Definition. An elementary topos is a category, � such that 

 (1) � is finitely complete,  

 (2) � has exponentiation, and 

(3) � has a subobject classifier (Lawvere, 1964; Paré, 1974). 

Alternatively, a category � is a topos if 

 (1) � is finitely complete, and 

 (2) � has power objects (Wraith, 1975).
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