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Abstract 

 

The psychological science fiction movie, Inception, is based on synchronized group lucid 

dreaming, dream incubation, information extraction and idea injection.  If a dreaming 

entity is not consciously aware that they are in a lower level reality, they can be 

influenced or coerced for sensitive information by more conscious individuals; something 

that would not have probably happened in original levels (reality).  Deformations occur at 

each level so that spacetime compacted what-if epochs can be simulated as decision 

points along the history path of a conscious entity.  In this study a toy conceptual model 

is proposed for inception coalition games. This metamodel is a novel abstract framework 

for generalized decision-making.  Ideas emanating from automata theory, category/topos 

theory, physical causal models from quantum gravity, generalized theories of uncertainty, 

evolution, and spectral irrationality are used.  Moreover, in generalizations to inceptions, 

game dynamics are proposed in which risk in strategies may be visualized through 

information morphing object interaction in multi-dimensional and sensorial virtuality. 

Conscious states born from different levels of inception and epistemic belief revision of 

strategies interact.  Jumping to multiple levels will be equated with desiring  information 

and influence peddling with time discounts.  It is posited that inception games may be 

used as emergent risk analytics generated by recursive simulations of inception level 

games. Equilibria and pattern dynamics may be gleamed from these game constructs. The 

social impact of this study will be to present novel emergent approaches to decision-

making that interact with general uncertainties and risk propagated by multiple hidden 

knowledge-seeking and effecting agents with diverse agendas.  
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Introduction 

The popular psychological science fiction movie, Inception, written, co-produced, 

and directed by Christopher Nolan, is based on group lucid dreaming, dream incubation, 

and coercive information extraction from individuals (Nolan, 2009).  Levels of dreaming 

stages are shared by different people through the use of a fictitious apparatus, the PASIV 

(portable automated Somnacin intravenous) device that induces group sedation and 

synchronized dreaming.  If a dreaming person is not consciously aware that they are in a 

lower level reality, they can be influenced or coerced for sensitive information by more 

conscious individuals; something that would not have probably happened in their level 0 

(reality base) given their state of confidentiality and security surrounding such 

information. 

 
Figure 1 - The movie, Inception, its game concepts, gauging reality, and coalescing 
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In the übercompetitive environments of global business and geopolitics, all 

knowledge is acquired from the evolutionary and adaptive cyclical, iterative, and 

recursive sequences of observation, modeling, prediction, feedback, and coercion.  This 

gestalt may be operated from combinations of experiential intuition, scientific 

exploration, and spectral irrationality (Slovic, Fischoff, & Lichtenstein, 1980).  However, 

extraction of information is manipulative and resides on the fringes of espionage and 

coercion.  In this way, inception-like games emulate real world information gathering, 

idea infusion, and coercion.  It is in this spirit of computational gaming strategy that the 

author proposes to construct a novel decision structure that utilizes a generalization of 

inception-like rules and contemporary physical theories to emulate and model emergent 

co-opetive multi-agent organizational behavior dynamics involving coalitions.   

Inception teams (those attempting the extraction of information from, thought 

injection into or influence pedaling of unaware individuals) are akin to subcoalition 

groups in noncooperative game theory (Debraj, 2007).  One may then seek coalition 

strategy profiles that approach Nash, -Nash equilibria, evolutionarily stable, -

evolutionarily stable, and other types of coherent strategy types in this subgenre of games 

that obtain and enforce evolvable inceptions or this study’s definition of approximate 

inception, labeled  -inceptions.  Recent advances in generalizing probability for 

emergent physical theories such as digital (discrete) Planck level quantum-gravity and 

causaloid information structures, may lead to uncertainty game strategies that transcend 

both anthropomorphic and Planck-to-universe level spacetime mechanics (Hardy, 2008).  
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Additionally, generalizing game formats to explicitly express irrational social interaction 

on a spectrum and in the most general language of mathematics, category theory, and of 

theoretical quantum-like automaton, expands their implications for all physical and 

psychical action.  Quantum strategies in quantum games have been posited to more 

adequately model bounded rationality by using quantum interference patterns, for 

example (Burns & Roszkowska, 2005; Vannucci, 2004).  The expressiveness and 

generality of non-clasical mathematical logics bridged by category and automata theories 

and formed with respect to the structure of general languages ostensifies how powerful 

games as general multi-agent decision flow objects can describe behavior in sentient 

machines.   

Inceptions may be more generally framed as (time) discounted recursive games 

with stochastic evolutionary dynamics.  These uncertainty paradigms will be applied to 

inception game structures in order to produce novel emergent games that may mimic 

theoretical holistic co-opetive natural decision systems in the universe.  In this study, 

inception branches are constructed as very general co-opetive dynamic stochastic games 

with belief revision dynamics involving social power as measurements of payoffs.  Social 

power will be displayed in the form of consciousness awareness within each inception 

level.  Here consciousness awareness will act as a surrogate measurement of 

psychological advantage of one agent or group over another in the struggle  leading to 

inceptions.   

These games are also manifested in a computational sense utilizing generalized 

evolutionary and recursive hypercomputation automaton in which time dilation, in 
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general, and spacetime quantum gravity, in particular, are exploited by progenic 

generations of evolutionary automaton, in order to accelerate computation of the 

projected information coercion in each level. 

General recursion plays a major role in the morphogenesis of inceptions.  

Antrhopomorphic thought and hence deiciosn-making can be viewed a structurely 

recursive, of a possible emergent fractal nature (Kurzweil, 2012). Additionally, as noted 

before, recursion is a powerful metaphor in automata and computation as a mechanism 

for general AI.  Resursions are natural models for conflict – every thought process can be 

deconstructed as a type of conflict for inceptions.  In this study inceptions may generalize 

conflict gaming and well as be the main motive for investigating belief revision 

dynamics. 

These hypercomputers will be vested as Zeno-type machines.  Recall that a Zeno 

machine (ZM) is a version of a hypercomputer in which infinitely many Turing machine 

(TM) operations can be computed in finite periods of time (i.e., exploiting the Zeno 

paradox of approaching a boundary in the interval [0,1] by fractionation) (Potgieter, 

2006).  These Zeno machines may then evolve into higher order Gӧdel-von Neumann 

machines that are capable of self-writing adaptive new code and self-generating new 

prodigy machines (Schmidhuber, 2006; von Neumann, 1966). Rather than rely on 

standard recursiveness, inceptions will then be expanded to describe holarchical strategy 

structures - self-similar nets of inclusive decision branches (graphs) that are manifested as 

repeated and connected holons in a pseudo hierarchical network that are toy models for 

universal natural organization (Koestler, 1967/1990; Wilber, 1996; Laszlo, 2004). 
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Belief revision is key to inceptions since one group is endeavoring to influence 

another’s belief system so as to extract information or change that group’s motives or 

actions.  Belief revision in this sense, may be done through the use of manipulation of 

ideals which minimize contradictions within the inceptee’s belief system and by utilizing 

general Bayesian causal belief nets that take into account emergent uncertainty models 

for human neuroeconomic behavior including general fuzzified states, payoffs, and 

strategies.  Fuzzy logic and other uncertainty frameworks, including quantum probability 

and causaloids, are framed through the use of Zadeh’s logical precisiation language setup 

known as general theory of uncertainty (GTU) constraints (Zadeh, 2006).  Auxiliary to 

the GTU, the logical systems work of Gärdenfors (1992, 2004) and Dubois and Prade 

(2001) that extend Dempster-Shafer evidence theories of belief functions [Dempster 

(1968) and Shafer (1979)], and Zadeh possibility theory [Zadeh (1978)], and the social 

belief system modeling of Gilbert (1991), Hasson, Simmons, and Todorov (2005), and 

Glimcher (2010), help form what a mathematical description could be for such belief 

equilibria in inception games, the notion of a convergence to a consequence of belief 

revision and ensuing inception using inception (belief revision) operators as part of 

strategy profiles.  Gabbay, Rodrigues, and Russo (2007) and others extend belief revision 

operators to non-classical first-order (predicate) logics which would include the emergent 

systems considered in our generalized representations using GTU constraints in this 

study.  The category-theoretic representation of games given in Appendix E are mappable 

to higher order logics (n-categories and n-topoi have predicates which are ascending sets 

of sets and morphisms, etc.) and hence generalize belief revisions for first-order logics. 
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The use of virtual worlds (VWs) in simulating these decision games and 

visualizing risk will be instructive in building human-induced strategies under inception-

like scenarios and their visualization.  Simulations may also be run in order to observe 

inception game equilibria in human played VW game environments.  However, an 

effective visualization of risk remains lacking in traditional or contemporary analytics.  

Just-in-time or better still, ahead-of-time analytics should be stimulated by illuminating 

and interactive analytics visuals such as generalized shapes that represent real-time and 

projective risk objects and the orthonormal relative frameworks for measuring those risk 

profiles. Traditionally risk is measured as an operator on the product space of utility and 

some uncertainty space of distributions, (i.e., the inner product of utility and uncertainty 

measure).  What is usually not measured is the rationality of the uncertainty distributions 

made apriori and the propensity of the DM to be on a spectrum of risk-taking attitudes. 

These are invariably multi-dimensional, adaptive, and agenda (goal)-based from 

uncertain or incomplete information, hence the generality of the bounded rationality 

thesis of Simon (1957; 1991).  Moreover, inceptions will be proposed as general super-

recursive games and automata.  Simulations of inception games will then take on the 

form of very general recursive simulations, (i.e., simulations within simulations acting as 

advantageous speedup parallizers for running decision event scenarios).  In particular, 

recursive simulation of simple strategic games was found to dramatically produce 

improvement in tactical military gaming (Gilmer & Sullivan, 2000; Agarwal  & Gilmer, 

2004).    
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Organization of study 

This paper will be organized into sections outlining the introduction, focus, 

objectives, importance, lack of study and gaps, limitations, concerns, literature review 

and past works pertaining to similar constructs, followed by the main discussion of 

definitions, building blocks, and approaches to inception-like games and strategies. The 

paper includes five appendices that detail the main constructs of (i) decision and game 

theory, (ii) emergent game theories connecting back to general stochastic recursive games 

which are being presented as frameworks for inceptions, (iii) causaloids – a quantum 

causality model for emergent probability in the context of a theory of quantum gravity, 

and to be utilized to generalize inceptions to physics-based emergent structures,  (iv) an 

approach to a generalized expression of uncertainty used liberally, in this paper, to 

generalize the uncertainty regimes of games, decision, and information structures, and (v) 

category and topos theories which will lead to the development of higher order 

abstraction of general games and in particular, inception games. The introduction section 

is a summary of the premise surrounding inception, its rules, and mechanics. It will also 

encase a synopsis of the intent of the study to construct a mathematical representation of 

the inception-induced strategies into a game structure. Following this, as mentioned 

before, subsections on the focus and importance of the constructs, the lack of previous 

studies to investigate this phenomena, and objectives of the study will be presented.  This 

section lays out a brief organizational guide to the paper. 

The literature review will present with past piece-wise relevant components of 

game theoretic developments and emergent physical theories relevant to our approach. 
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Various concepts and proposals from coalition game theory, emergent decision and game 

theories and behavior economics, emergent physical information theories, category/topos 

and automata theories, and stochastic-recursive games will be presented.  Following this, 

virtuality and visualization of uncertainty and risk in information and decisions/games 

and the psychology of lucid dreaming will be gleamed upon, contributing to the premise 

of how we will present inception games in interfaces. 

In the next section, the methodologies used for the study will be discussed, 

including the interpretive and critical aspects of the methods. Following this will be a 

description of the study methodology and potential simulation set up of inception-like 

games and scenarios in virtuality interaction and computation. 

The development and analysis of the emergent models proposed for inception 

games will follow in the next section, followed by a section on general discussions which 

will include a briefing on the study findings, relating them back to previous relevant and 

contributing studies. 

In the next section, the limitations of the abstract models will be reviewed, 

including the shortfalls of any generalizations to the strategy models of the study with 

respect to real world scenarios. Following the section on limitations will be a section on 

the implications of the models developed for inceptions and their implications for social 

interaction analysis. 

The paper will conclude with a synopsis of the study, its conclusions based on the 

models presented and the study’s implications and impact on societal behavioral analysis. 

The paper will list all references and five appendices that introduce major aspects of the 
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foundations of traditional and emergent decision/game theories, higher order 

category/topos generalizations for games, a theory of generalized uncertainty, and a 

causal structure for quantum-gravity as a general approach to physical-based probability 

that may be used on very general dynamic game constructs. 

Focus of study 

In this paper, the idea of abstracting patterns of behavior and stratagem of a 

highly dynamic and evolvable game operated on generalized inception-like rules of 

engagement in order to navigate in such environments may lead to a more comprehensive 

and technical understanding of coercive behavior in interacting organizations, large 

subgroups, cliques, and individual agents.  The focus of this study is to propose a novel 

generalized game structure that evokes evolutional patterns of behavior and strategy 

choice in inception-like rule spaces where agents have agendas to gather information 

about or to use in transacting some interaction with other agents.  This is the essence of a 

co-opetive market.  These may lead to the development and formation of generalized 

agenda-based coalition subgroups in physically complex evolvable and adaptive 

environments. 

Importance of study 

In this study, insights into the operationalization and formation of working 

coalition groups in real world industries or government entities may be gleamed from the 

study of simulated inception games. This dynamic, in turn, may reveal some processes 

that lead to the morphogenesis of important coalitions that form to influence global 
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economic and political phenomena.  Inception-like activity introduces a natural version of 

coercion in transactions between groups and individuals.  This may emulate modern, real 

world agenda-based techno-socio-economic behavioral patterns. Coercion is achieved 

more easily through the ubiquity of this global techno-socio-economic network and 

ensuing media types. Additionally, the time dilation properties of inception scenarios and 

the inconsistencies inherent in lucid dreaming in groups perpetuated by inceptions may 

point to temporal advantages in certain strategies and of the proposition that any 

inception level can be equated to a hyper-reality level which includes the observer’s 

subjective reality level (level 0), (i.e., relativism in reality and its logic system 

inconsistencies ala Gödel’s Incompleteness Theorem) (Gödel, 1962). 

Lack of study 

While the fields of behavior economics, game theory, and psychology have fused 

together quite remarkably in the last three decades, due largely to the seminal works of 

Tversky & Kahneman (1974), Gilovich, Griffin, & Kahneman (2002), and Finucane, 

Alhakami, Slovic, & Johnson (2000), obtaining profoundly technical insights into the 

workings of human decision-making under various conditions of uncertainty, spectrum of 

risk, and stress, no unifying framework encompassing emergent sciences nor the 

particular spacetime dilation branching and equated time discounting stochastic games 

described in this paper, has been studied or developed.  Gilboa (2010) has pronounced 

that the field of decision theory remains lacking a uniformly cohesive calculus – different 

decision environments require different regimes of uncertainty, risk, and rationality 
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measures. In addition, preference spaces are mostly approximated based on experimental 

outcomes – normative approaches to bounded rationality are prescriptive not theoretical.  

Again, a uniform approach to decision game spaces lacks a general framework. 

Inception-branching, as it will be labeled in this study, is akin to auto-generation of 

training sets in artificial neural networks (ANNs).  However, there is a major difference. 

Training in ANNs tune the weights of the mostly static neural network structure, (i.e., the 

model order of the ANN remains essentially the same and the influences of agents are 

nearly homogenous).  In inception-branching, coercion and persuasion may sway the 

participants – be they the intended target of inception or the inception team – to change 

the model of reality for that information regime. 

Treating dream states as scenario builders, while previously posited (Revonsuo, 

2000), has never been equated to or synthesized for decision analysis.  Additionally, 

mathematical treatments of inception-like strategies for games have never been 

approached for utility or investigated to surmise possible types of game equilibria for 

projecting stability of stratagems.  Inception is a different type of lucid dreaming because 

it considers multiple group interaction and hence is a type of group decision making with 

asymmetric weight influence distribution. 

Research Questions 

Some research questions that this study will attempt to confront include (i) can 

inception-like rules in a gamte theoretic setting emulate or improve real world decision 

making and strategy formation in organisms, (ii) are there intrinsic novelties in the game 
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structure of inceptions or do they fall into the category of strategy models or patterns in 

game theory with certain useful and practical solutions/equilibria, (iii) can one frame 

belief revision (operators) on belief systems of coalitions for inceptions, (iv) using a 

virtual world/holodeck, can hybrid human-automaton multi-agent systems form  

emergently superior strategies not predictable using classi al rational decision/game 

theory, (v) can risk be a generalized multi-dimensional measure beyond intervals or 

singletons and can it be translated to the human as sensory stimuli, and (vi) are inception 

game structures representative of a more higher order abstract such as a logic, automata, 

or categories/topoi? 

Objectives 

In this study, the ultimate goal is to construct a viable model for inception-like 

games with strategies and propose their corresponding virtualization that employ very 

general mathematical rules emulating actions and scenarios in complex, adaptive, and 

evolutional organizational behavior. The game algorithms can be embedded in a virtual 

worlds (VW) environment such as Second Life (Gross, 2006) or a prototypical Star Trek 

style holodeck as the action engine.  Human role playing can be monitored, to be 

compared to full simulations using game analytics (Medler and Magerko, 2011). The 

evolution of both experiments may then be compared based on typologies of patterns of 

action (strategy evolutional patterns) thereby ostensifying the behavior of agents and 

groups exhibiting inception-like agendas which can be viewed as general social 

interactions in organizations and organisms. 
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 Additionally, abstract mathematical and contemporary physics-based theoretical 

and conceptual models of inception-like games and strategies framed and motivated in 

part from the psychological science fiction movie Inception will be presented.  Virtuality 

of sensory systems mapped to risk components of inception games are posited.  It is 

anticipated that such results can help develop future emergent game and decision 

analytics through the process of recursive game navigation in the multiple levels of 

inception scenarios.  Games and automata are generalized in order to expand the concept 

of social inception games using emergent mathematical and physical theories. 

General Theory, Concepts, and Hypotheses 

 In this study much will be made of the concepts of inception-like strategies in 

conflict games.  It will be posited that inceptions are equivalent to general social 

stochastic (dynamic) recursive games with individual and coalitional strategies, 

behavioral rules, belief revision, general utility functions that describe diverse forms of 

payoff, and compacted time-discounted evolution.  The mathematical models and 

proposed simulations in this study of inception-like behavior in virtual gaming is a means 

to emergent and evolutionarily strategic gaming scenarios producing advanced predictive 

risk analytics built from an equivalent environment of extended game analytics.  

Inception-like (dream) levels may be emulated in modeled virtual worlds to simulate 

emergence of strategic behavior in generalized conflicts involving coercive information 

flows.  Through inception dynamics and novel representations thereof, generalized 

decision risk can be effectively and directly linked to human-machine sensorium, a kind 
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of virtual enhanced hair on the back of your neck.  Finally, inception games as highly 

dynamic social processes have more powerful abstractions and higer-level mathematical 

presentations as categories, topoi, logics, and automata.
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Literature Review 

In this section a review of classical and contemporary developments in coalition 

game theory, behavioral economics, emergent physical theories, non-classical approaches 

to automata and category theories, virtuality and holography for games, and the 

psychology of lucid dreaming will be briefly done. For brevity, the appendices contain 

broad overviews of classical and emergent non-classical decision and game theories 

including quantum, relativistic, fuzzy, and rough set, and causaloid-based quantum 

gravity as a novel proposal for a causal quantum gravity automata and physical theory.  

Additionally, a generalized theory of uncertainty is reviewed in Appendix B as a 

framework to express general models for uncertainty.  Under the umbrella of a 

generalized theory of uncertainty (GTU) from Zadeh (2006), most automata and 

corresponding game models will be generalized in expression.  These fields represent the 

foundational cross section of the approach to the novelty of inception-like game strategies 

given in this study. In this treatise on inception-like levels in games, behavior economics 

is melted with game theory using the possible irrationalities involved in dream-like 

imaginative what-if scenarios with game strategies.  

The psychology of lucid dreams is a starting point to allow for an analogy for 

stratagem thinking for inceptions. The bicameral nature of human decision making is 

central to the theme of multiply embedded inception levels.  Gleamed from fNI 

(functional neuroimaging) studies, when making decisions humans rely on both the slow 

high level rational analysis emanating from the neural net circuitry of the prefrontal 
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cortex (PFC) areas (ventromedial-vMPFC and dorsolateral-dlPFC) in conjunction with 

the orbitofrontal cortex (OFC), and the fast emotional and intuitive approaches arising 

from the neural net circuitry of combination of areas of the amygdala, fusiform gyrus, 

insulae cortex, among others (Kalin, Shelton, and Davidson, 2004; 2007; Singer, 2006; 

Glascher, Adolphs, Damasio, et al., 2012; D’Argembeau, 2013).  Multiple inception 

levels may present with a concept that espouses various and different multiple 

combinations of components in the areas of the decision-making bicameral mind.  For 

example, a certain inception level may concentrate on elements of risk aversion 

developing through the chilling fear of loss combined with the unemotional probabilistic 

analysis of updated Bayesian priors leading to posteriori distributions for those loses.  

Other inception levels may include different combinations of risk aggression and a 

different type of probabilistic analysis such as those emanating from quantum-based 

stochastics.  The final inception may then be the master or controller of all these partial 

conjectures of decision-making from all inception levels developed.   

While decision-making was just given as a human endeavor, here we shall 

approach a decision-making collective from a hybrid of entities, including automata.  

Emergent physical theories drive novel automata models which will give rise to a way to 

equate winning game strategies in inceptions (such as  -Nash equilibrium and  -

evolutionarily stable strategies) with modular recursive calls (from inception level 

subgames) in emergent automata types that may emulate inceptions.  
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Behavioral and neuroeconomics 

 Game theory, the multi-agent interactive extension of decision theory, is an 

analytic tool to help describe what may transpire in a game situation where strategies 

(action space profiles) are executed and resultant payoffs made, under deterministic, non-

deterministic, or probabilistic rules of engagement.  Decision rationality is assumed for 

classical game theory depending mostly on utilizing rational choice theory (Scott, 2000). 

However, humans become irrational or more aptly, boundedly rational for many reasons, 

including fear, bias, levels of uncertainty, vagueness or lack of information, lack of time 

to analyze, aggression, and complacency (Simon, 1991).  These situations manifest 

themselves so often in transactions that unpredictable irrationality plays a pivotal part in 

modern game portfolios, from stock market swings to consumption trends to black swan 

and dragon king catastrophes (Sornette, 2009; Taleb, 2007).  This scenario is what the 

field of behavioral economics attempts to embrace.  Cognitive psychologists, led by 

Kahneman and Tversky, showed how humans made decisions under uncertainty and 

emotion (Tversky & Kahneman, 1974).  This precipitated a monumental change in the 

way economists described human decision-making economic behavior.  In the inception 

game, dream states define the silo of irrational possibilities that can be applied to 

situational interactions from an individual’s current inception level.  This means that 

behavioral economic tenets may be applied to inception games involving dream state 

levels, the ultimate human what-if analyzer of things that could be physically impossible 

events in reality (modulo level-0 inception). 
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 In large systems of interacting agents engaged in strategies, games become 

complex very quickly. It was Axelrod (1997) who endeavored to model this complexity 

in how large multi-agent systems evolve, finding patterns of formation, detachment, and 

ultimate stasis or chaos. Large scale game simulations bore out the idea that complex 

interacting systems evolve into discernible categories of social behavior, especially when 

cooperation on a spectrum is manifested. Group behavioral economics is then a complex 

of multi-agent economic agents that offer strategies which may gyrate from cyclic stable 

behavior to regimes of transition to chaotic regions.  The interacting levers of cooperation 

temperature for agents dictate these asymptotic patterns for the group. Inception games 

represent a type of recursive and evolutional complexity in such multi-agent networks 

based on the meandering temporal levels of  inception.  Behavioral game theory and 

economics are reviewed in more detail in Appendix B. 

Game theory and coalition building 

 Coalitions are built based on shared interests in game situations among subgroups 

of agents. Within a coalition, it is assumed that a cooperative game ensues as this shared 

interest is held. However, between coalitions, it is assumed that a non-cooperative game 

develops (Debraj, 2007).  There are nonetheless, situations in which different mixed 

strategies (probabilistic mixtures) among agents are executed within coalitions (being 

unpredictable when others predict so) despite the shared interests, developing into mixed 

co-opetive groups of coalitions, (i.e., some coalitions share partial interests and partial 

counter-interests) (Brandenburger & Nalebuff, 1996; Camerer, 2003, 118-150).  An 
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example of this game situation would be counter-intelligence, multiple spy levels, and 

double-diplomacy (i.e., double, triple … N-agency with adjoined and composite dynamic 

self-interest agendas).   

 In inception-like games, multiple dream levels introduce complexity into and 

opportunities for coalitions to form based on collective consciousness awareness and 

advantages within subgroups of dreamers.  This paper will investigate possible formation 

patterns for coalitions which would be the only way for an individual agent to survive in 

an inception game.  Appendix A reviews some of the mathematical setup for classical 

and non-classical games and decisions, definitions, and novel approaches in which we 

would like to generalize to our scenario in inception games.  In our main discussion, we 

start with some definitions of inception interaction, agents in groups or individually are 

measured for advantages based on their knowledge of what level they are in 

(consciousness level) and the simultaneous lack of consciousness of their targeted 

counterparts.  Inceptions are then treated as generalized stochastic recursive games in 

which a rich equivalence between game graph strategies and pushdown automata 

modular calls is utilized to posit computationally favorable stratagem in inceptions.  

Psychology and structure of dreams, visualization, and virtuality of games 

Lucid dreaming (van Eeden, 1913) is the validated phenomena of perceiving 

dreams within dreams and of being conscious of being in a dream state (LaBerge, 1990; 

LaBerge, 2009).  It is therefore a forerunner to the awareness of group dreaming 

iterations of inceptions. Group dreaming is not possible, but a group having similar 
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dream scenarios is likely when that group experiences similar real world phenomena 

because of external stimuli and associative memories contributing to the staging of 

dreams. The physiology of entering into a dream state suggests that the mind solidifies its 

perception of incredible events in a dream by correlating them with real world 

phenomena that closely match them, (i.e., a freak event in a dream is linked with an 

equally unlikely, but similar realized event in the conscious world) (McLeester, 1976).   

In inception dreaming, an individual (group) is required to be able to differentiate 

levels using several cues, such as the movie totem spin top spinning indefinitely in a 

dream state as opposed to eventually stopping in a reasonable amount of time in reality. 

However, an infinitely spinning top is possible in one’s imagination or through 

hallucinations and hence in a dream state because one may have come to the conclusion 

in their reality (level 0) that some things are infinite in certain belief systems.  This is an 

inconsistency in one’s logic belief system.  However, in any logic or (logical) belief 

system in which one can internally prove its own consistency, incompleteness of its 

proving power persists (Gӧdel, 1962). 

Virtuality refers to attempts to asymptotically approximate a model of reality 

through exceedingly more interactive computer simulation of anthropomorphic sensing 

of stimuli and near real-time feedback in order to reconstruct a target reality.  This 

compact description is not without ambiguity as Peirce defined virtuality in a 

metaphysical manner to mean that any reality is an approximation to connectives to 

objects – the thirdness of things (Peirce, 1931).  The firstness of Peircean reality is the 

object’s metaphysical self or essence. The secondness is the reflection of the observer of 
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that self. Thirdness is usually approximated using signification – assigning expressions to 

objects.  In this sense, the triad of Peircean reality create virtualities of the original object 

self (Esposito,  2013).  Computational virtuality is optimally therefore a 4
th

 order 

approximation to reality, (i.e., computation, if universal, asymptotically converges to 

signification).  Peeling back the onion of successively more computationally powerful 

automata reveals nth order approximations to Peircean signification based on SPACE, 

TIME, and SPACETIME computational resource orders of magnitude with respect to 

Planck-level granularity for digital physics reality. 

Inceptions mimic socio-economic interactions – everyone wants something from 

someone.  Virtualizing such game scenarios is akin to generating what-if computations 

for these interactions.  If real-time computation of risk can be visualized while the 

dynamics of the decision and game branching proceeds in an inception, the structure of 

the metamorphosis of highly complex and adaptive games may be visually 

acknowledged.  This enlightenment may make practical prescriptive and descriptive 

visual models for highly adaptive social dynamics.  One purpose of this study is to 

propose risk virtual and visual tools that may convey and present more simultaneous 

information on real-time risks of decision-making within the structure of the generality of 

inception games as social interactive constructs.  Most visualization queues used for 

quantitative interaction are militaristic metaphors – cockpit or dashboard digital dials, 

hybridized levers, digital meterizations, etc.  Here we will consider more ethereal 

connectives to the sensorium of anthropoids – geometric shapes and generalized 

tactile/haptic interactions through multi-sensorial universes.  Risk will be a multi-
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dimensional object whose orthogonal directions are independent measures of various 

aspects of uncertainty, irrationality, and social relational spaces.   

Jiang (2011) develops temporal and Bayesian extensions to the idea of action 

graph games (AGGs) , in addition to deriving aspects of Nash equilibrium computational 

complexities.  Basic AGGs (AGG- ) as introduced in Bhat and Leyton-Brown (2004), 

lead to a compact visualization of structured large games possessing simultaneous agent 

moves, independent action spaces and other simplifying conditions.  Appendix A details 

what AGGs are, including the extensions from Jiang.  Compact visualization of AGGs 

comes from a graph depicting nodes (agent actions),  membership in neighborhoods for 

nodes (directed edges), and dotted containers (agent action spaces).  Here, we may utilize 

aspects of AGGs extended to the more dynamic and evolutional properties of inception 

games, (i.e., to general multi-dimensional evolutionary games considered with emergent 

physical laws), and their visualization in multi-sensorium virtual environments as 

generalized n-dimensional and polymatrix-like displays in conjunction with the author’s 

notion of compact visualization of game risk through the use of visual glyphs known as i-

morphs.  Modifications to AGGs for inception games present notions of network 

visualization while i-morphs aid in envisaging dynamic risk in inceptions. 

In very simple 2x2 games (two agents with two moves), recent developments 

from Goforth and Robinson (2005), Robinson, Goforth, and Cargill (2007), and Bruns 

(2010;2011;2012) have led to a similarity categorization (and metric) of those games in 

terms of a graph topology with respect to payoff families and preference orderings.  This 

is a graphical visualization of similar 2x2 games using swap moves that reshuffle 
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preferences and payoff perturbations.  Topological neighborhoods are defined by the 

number of swaps or moves that connect different similar games.  Hence, a game topology 

for the finite discrete space of 2x2 games is a means to developing an effective similarity 

measure given by the number of swaps or moves needed to transform from one game to 

another.  The merit of this type of typology is to visualize how games may be 

transformed into others, therein being able to more powerfully investigate the dynamics 

of social interactions and examining the possible resolution of conflict and destructive 

inequities.  In this study we consider expanding this discrete topological view to higher 

games in an attempt to more readily visualize multi-dimensional risk in evolutionary 

games such as inceptions.  The space of 2x2 games is easily categorized, but serves as 

atomic building blocks for more complex and general games, in particular games 

involving computational units that general the Boolean algebra such as our treatment of 

qbits or e-bits (entangled bits) in quantum games and further generalizations in our 

application of a generalized theory of uncertainty (GTU) from Zadeh (2006), manifesting 

a generalized bit labeled as a g-bit. 

The geometry of games has played an extremely important and central role in the 

understanding and computation of equilibria (through homotopy methods) (Herings and 

Peeters, 2010; Govindan and Wilson, 2009). Specifically, equilibrium correspondences, 

which are set functions mapping games to their equilibria and the integer topological 

index (lex-index) of connected components of Nash equilibria give both the geometric 

categorization and orientation and stability, respectively of game equilibria (Balthasar, 

2009).  These are tantamount to showing how one may then refine or grade equilibria.  
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Visualizing equilibria via geometric profiles of equilibria in the above fashions may 

further illuminate game evolution with respect to equilibria dynamics. 

Keller and Mulch (2003) introduced multi-agent influence diagrams (MAIDs) in 

an attempt to better envision and speed up computation of equilibria from the 

probabilistic dynamics involved in discrete games over the matrix or graph 

representations of normal and extensive games respectively.  Equilibria computational 

advantageous of MAIDs over game graphs and game trees are highlighted for 

asymmetric structures and deterministic payoff functions.  MAIDs are akin to influence 

diagrams for Bayesian networks, but generalize them for games.  Visualization of 

probabilistic or uncertainty dynamics (the changes in how probability or other uncertainty 

distributions or descriptions on pure strategy spaces evolve from information flow) 

alongside a diagram of how actions and payoffs change in games retains more overall 

decision analytics for the DM. Topological order is put on the decision of agents based on 

a relevance graph that is laid on top of the main MAID.   

In MAIDs, decision points are depicted by rectangles, chance or cumulative 

probability distributions (CPDs) variables are denoted by ovals, and utilities are denoted 

by diamonds.  Parent nodes of decisions represent observations, parents of chance nodes 

represent probabilistic dependencies, and parents of utilities represent parameterizations 

of those utility functions.  Game strategies are then mappings from decision parents 

(observations) to actions.  Pure strategies are as in game theory, a single type of  action is 

picked.  Mixed strategies are then probabilistic distributions over those singlet actions.  

Strategy profiles are the full set of strategies for all agents in the MAID game.  Relevancy 
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measures called s-reachability are then developed to prune computations for Nash 

equilibria.  This reachability criteria is a probabilistic measure of how decisions made by 

an agent are relevant or dependent on other decision points.   

By connecting together different MAIDs, Gal & Pfeiffer (2008) develop networks 

of subMAIDs as networks of influence.  Each MAID is a node in a network influence 

diagram (NID) that represents a frame of belief (mental models) of agents.  

Unfortunately, MAIDs and hence NIDs only target discrete symmetric games with 

deterministic payoffs even though mention is made of a scheme to include asymmetric 

games.  NIDs also model a way to express quasi-irrationality by letting agents have a 

positive probability of using different block mental models or MAID nodes in order to 

make decisions.  Coupled with Bayesian network formalisms, NIDs can endeavor to 

model what we shall call probabilistic irrationality.  In this study we consider more 

general probabilistic models, including quantum, quantum gravity, and classes of 

paraconsistent logics to direct Bayesian connectives for irrationality potentials.  Our 

interest in MAIDs lies in the graphical economy of its representation of certain game 

regimes, leading to computational shortcuts based on divide-and-conquer methods for 

calculating equilibria from smaller subgames which can be expressed as sub-MAIDs.  

Visualizing general recursive games using equivalent (or nearly equivalent) MAIDs of 

those games can lead to virtualization of highly dynamic and complex inception games. 

While games involve components of risk, visualizing risk has been slow to 

develop intuitively.  Heat maps show color coded clusters of numerically similar groups 

of information.  While risk groups can be presented as such, color is a limited spectra for 
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humans.  Risk is in the need for both quantitative atoms of measurement so that those 

atoms can then be used in visualizations and of ways of displaying such atoms in a 

meaningful and intuitive manner to maximize the understanding of risk areas. One such 

approach was from Howard (1984) referred to as micromorts.  Micromorts (micro 

mortality) are units of risk that equate to a one-in-a-million chance of a fatality or death 

occur.  The generalization of this are microprobablities which are units of one-in-a-

million chances of a general event occuring.  This represents an event with probability 

610
of occurring  

Gaps in existing research 

 Simulated inception games interpreted as parallel, fault-tolerant networks and 

what-if analytical automata has not been proposed, studied or investigated in the existing 

literature in decision theory, game theory, or causal analysis.  Although the inception-like 

levels in the movie Inception are unlikely to be practical in real world analysis of 

dreaming, it introduces some intriguing possibilities for executing a coalition game 

involving computational time warps and gravity, mixed coalitions,  multiple nested levels 

of coercion, and generalized uncertainty and risk.  Inceptions may also be a vehicle for 

building adversarial reasoning methods when dealing with generalized deception, 

coercion, and diversion in co-opetitive environments with partial or corrupted 

information.  Inceptions, nonetheless, may involve large numbers of agents and a broad 

diversity of interaction and strategies, utility schema, and uncertainty possibilities.  Large 
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equilibria sets may be involved in an inception and hence, the fine tuning of selecting 

equilibria to use becomes necessary.   

 In Kott and McEneaney (2007) various authors develop interdisciplinary methods 

utilizing game theory, AI planning, cognitive modeling,  and machine learning for the 

computation of equilibria or sub-optimal stratagem types of large scale imperfect-

information games that are in the form of adversarial reasoning arenas predominantly in 

warfare, terrorism, and battlefield scenarios post 9/11. Particularly, methodologies 

utilizing classical coalition game theory, multi-agent machine learning, and stochastic 

control theory are investigated.  Linguistic geometric (LG) methods have been used 

recently to model large scale and state spaces of multiagent systems as abstract board 

games (ABGs) (such as chess and tactical  theatre warfare), general finite state machines 

(FSMs) whose structure includes mutual agent influences, using a geometry of states of 

knowledge representation and reasoning objects known as (LG) zones (Stilman, 2000; 

Stilman, Yakhnis, and Umanskiy, 2010; Stilman, 2011).  LG hypergames are constructed 

as linked ABGs, followed by the generation of advantageous start states, real-time 

regeneration of strategies and tactics, and the representation of reasoning of the imperfect 

information which includes deception (Stillman, Yakhnis, and Umanskiy, 2010).  LG 

hypergames are touched upon in more detail in Appendix B.  Inceptions may again be 

viewed as further abstractions of LG hypergames with more general linkage structures 

based on the diversity of geometries presentable between inception levels, (i.e., ABGs 

which are finite state machines, can be generalized to live on non-Euclidean geometries 

of quantum-gravity structures such as LQG spinfoams and superstrings).  In large scale 
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games, Ganzfried, Sandholm, and Waugh (2011) developed techniques for the 

computation of strategy purification and the use of thresholds to form equilibria of 

strategically similar smaller abstract games that can then approximate the equilibria of a 

larger game.  Mixed strategy equilibria are usurped by more computationally practical 

and effective nearly-pure or pure strategies for agents. Purification and thresholding for 

strategies is reviewed in Appendix B.  Other adversarial activity in games such as 

massively multiplayer online game (MMOG) environments has been modeled and 

distinguished, such as gold farming, in Ahmed, et al. (2011).  These behavioral patterns 

may be generalized in more complex situations involving inception-like scenarios that 

can be launched in social interactions.  

 In this study non-classical emergent methods will be discussed for developing 

inceptions as generalized multi-stage and multi-agency adversarial reasoning machines.  

Furthermore, it will be posited in this paper that such inception-like level games can lead 

to the development of certain equilibria strategies in mixed simulation and virtual world 

emulation of  games played by both humans and IQ diverse machines.  These results will 

point to the possibility of constructing such categories of decision games as ways to 

operate near optimal strategies in complex agenda-based transactions involving the 

involuntary extraction of information from parties and deceit   the way of modern 

technical evolutionary survival. 
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Methodology 

The research methodology utilized in this study will be that of a grounded 

theoretical framing (theory and concept building) based on (i) emergent game theories, 

(ii) generalized uncertainty metamodels, (iii) the analogies of inceptions as recursive 

decision branches, (iv) higher level mathematical abstractions of games, and (v) the 

virtualization and advanced holographic visualizations of risk in decisions and games. 

Design as science methodologies will be considered for the simulation-based 

emergence of models of belief revision within strategic (inception) games ala Markov 

Chain Monte Carlo (MCMC) simulations of model building of stragegic profile 

distributions and beliefs about them.  In addition, a information science construct of a 

new model for decision under uncertainty in coalitions of coercion in game situations will 

be posited.  In a followup study to the concepts in this paper , simulation models are 

constructed, an important artifact of the design of science methodology. The game 

theoretic model of this study was not constructed based on traditional statistical data 

analysis as used in quantitative studies or in certain data-centric qualitative studies and 

their mixed hybrids. 

The design of science is a methodological philosophy introduced by Herbert 

Simon to describe model theory constructs in scientific development (Simon, 1996).  For 

developments in information science several design of science methodology guidelines 

were developed in order to label examples of such studies (Hevner, March, Park, & Ram, 

2004).  One of the more important items in these guidelines is that of the production of an 

artifact model construct.  In this study, the theory model constructed is that of a game 



 

37 

 

 

strategy and structure for the involvement of coercion in information extraction in the 

scenario of inception-like levels of deception, emulated as dream levels in the movie 

Inception. 

Measurement of the effectiveness of the design of the study model will be a 

simulation within a virtual world environment played by humans and automaton agents, 

(i.e., simulation of coercion agents in dream states of deceit under the structure of mixed 

strategy co-opetive coalition game theory). We will also consider the use of an 

information criteria (IC) approach to finding optimal (parsimonious and high 

generalizability) model families and model sizes for assessment pairs for belief revision 

operations.  For families of Bayesian belief models  dM  , we calculate the following: 

 
   
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  (2.1) 

where  *

*

d
M  is the optimally chosen model,  , ,dIC M N  is the IC statistic to 

calculate, Nl is the likelihood operator based on the model  dM  , d  is the 

parameterization of the model of dimension d, and  N  is a function of the sample size 

N, which characterizes the type of IC statistic to use (Lu,  2011).  The AIC (Aikaike) and 

BIC (Bayesian) information criteria are the most popular versions of these model order 

selection statistics based on   2,logN N  respectively . We choose a consistency 
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 and generalized version of this IC (GIC) from Rao and 

Wu (1989) where 0 and 
log logN NN N

 

 
   .  
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Simulation Analysis 

Simulations of inception games can be gleamed upon to detect patterns of 

possible stratagem candidates for Nash -equilibria and -evolutionary behavioral 

stability.  Nash -equilibrium will mean that agents will have reached a decision stage 

point where no further jockeying of change of strategies by all agents, will produce an 

advantage for any agent within a margin of  difference in payoffs while -evolutionary 

stability means that no outside agents can eventually be introduced into the game with 

superior stratagem within  payoff differences.  Note that Nash -equilibrium and -

evolutionary stability generalize the concepts of Nash equilibrium and evolutionary 

stability respectively, (i. e., =0 limiting cases).  Inception games inject simultaneous 

notions of deception, coercion, and persuasion implying the production of intermediate 

regions of game stratagem instability before eventually converging to -evolutionarily 

stable states and Nash -equilibrium.  Our equivalent notions of   -type equilibria is an

   inception, the state of an inception team obtaining a nearly guru-consciousness 

within  distance.  

Patterns of evolution of such game development involving deceit and mutual 

information extraction under the scenario of inception levels of dreaming will lead to 

better evolution models for organization negotiation, diplomacy, and coalition building.  
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Deceit does not have to lead to a limited number of insidiously minded agents having 

superior positions in a game. This inception model could build on the prospect of mutual 

growth, despite the deception theme.  
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Limitations 

Since this study is anticipated to be based on proposed game-theoretic structures 

and models involving inception-like levels of deceit, real world comparison is 

approximate at best.  Similar real world conditions can be emulated in a virtual world 

game with the inception deceit algorithms to compare some past history of certain events 

involving espionage, for example. However, these, situations are approximate 

comparisons and no predictive power is guaranteed or posited.  These deceit models are 

to be used to study past evolutionary developments of some geo-political situations that 

had involved deceit, in some form.  Computational complexity of search and calculation 

of inception game solutions and equilibria may be NP-hard as in the computation of 

Bayesian AGM-consistency.  The agent size in massive history-based games of which 

inception games will be framed from, grows the complexity (both computational and 

storage-wise) exponentially unless certain simplifying structural assumptions are made.  

The thresholds for agent like-minded neighborhood size in consideration of 

Shelling models for inceptions and the distribution of belief revision priors for stragey 

revision may need to have assumptions made on them for practical modeling. 

Simulations of human play are gross approximations to the spectrum of human bounded 

rationality. Strategy regress and the possibility of multiple n-agencies in game play may 

introduce instabilities into the regions of belief revision. In this study, no human game 

playing analytics are collected and hence followup studies are needed to reconcile the 

theory of inceptions with real world human conflict play. Mixing belief uncertainties 

among agents may lead to a type of belief neurosis or further regress in belief revision.  
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Mapping generalized risk to multiple human senses is limited by current technologies, 

ethical considerations of pain, and low thresholds of cognitive (sensory) overload. 

Additionally, few results on the effects of prolonged exposure to holodeck environments 

and multi-sensorial feedback have been studied.  Lastly, this study is a theory-laden 

endeavor with no prior literature results on inceptions or generalized conflicts modeled 

on such a conflict structure. No real stable solutions may exists in simulations and there 

may indeed be a need to make-semi-unrealistic assumptions on the inception model for 

practical comparisons to real life conflicts to be made. 
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Implications 

It is hoped that the results of this study will have implications for novel 

approaches in organizational and individual decision behavior when deceit is present in 

multiple levels of awareness among and across many interacting groups.  The application 

of such interpretation of deceit models of this study may lead to a better understanding of 

real world diplomacy under the extreme stress of uncertainty and perceived mutual 

deceit.  Generalizations to game theory based on the inception game model may include 

more consistent time translations between dream levels, asymptotic analysis of inception 

games in level
lL as l  and more general rules of engagement for covert information 

extraction (deceit) so that more general and real world situations can be simulated. 



 

44 

 

 

Mathematics of Generalized Inceptions  

  In a generalization to the inception schema, this study proposes to setup a 

scenario in which inception-like embedding can be constructed in a virtual world (VW) 

framework such that persons from different levels of existence can co-exist in one level.  

One can always know which respective level of existence they are in by having their 

persona avatars embedded with the level number that they are currently residing in.  

These numbers are generalizations to the movie’s notion of a spinning top in which if the 

top spins indefinitely, one deduces that they are in a lower level existence, but do not 

know which level that is.  They need to continually spin the top in each ascending level 

existence.  Although one can know of the level they are currently in, they cannot know if 

other persona are in lower levels in the current level existence.  In an alternative version, 

one can have a probability distribution to assign whether one can know the level number 

of another persona or of theirs in a particular level existence 

Let ( , )vw i j depict the level j VW of persona i for 1,2,..., ,   1,2,..., ii n j m  .  

Hyper-reality for persona i is 1j  , i , (i.e., level 1 existence).  Now, 

( , ) ( , ),  for some, , , , .vw i j vw k l i j k l   We assign the inception mapping scheme for 

persona avatar i, as a bi-function, ( , ) : ( , ) ( ( ), ( ))i i i if g k l f k g l . ( , )i i iI f g will depict 

this inception schema for avatar i. 

In the probabilistic case of knowing “level consciousnesses” in one’s level j VW, 

assign a probability density to each persona avatar, i, , ( )i jp k , which depicts the 
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probability of persona avatar i knowing the level of existence of persona avatar k in 

persona avatar i’s j level VW. 

What are the convergence or asymptotic behaviors and strategies of a persona 

avatar in an inception schema, simulating such evolution in VW environments? Some 

game-theoretic notions may be used to form a strategy portfolio for a persona avatar i, 

with a particular inception schema 
iI . 

Definition.  Persona avatar i is said to reach consciousness death if 

, ( ) 0,  as ,  .i jp k j k    

A consciousness death persona is essentially lost in reality with high probability 

in sufficiently deep levels of existence VWs. They are in an optimal position to be totally 

gullible. 

Definition. Persona avatar i is said to reach consciousness guru if 

, ( ) 1,  as ,  .i jp k j k    

A consciousness guru eventually reaches the situation where they are nearly fully 

aware of everyone’s existences and their own, superior to other non-consciousness gurus. 

They are in an optimal position to be omni-influential. These gurus will then possess 

dominant strategies in a game by the shear weight of their influence. 

Consider the normal form of a non-cooperative game structure for coalitions with 

inception-like properties with time translations for evolutionary qualities.  Formally, let P 

be the set of agents, with n P ,
iA , the set of actions available to agent i, and 

:iu A , the agent’s payoff function, where 
i

i P
A A


  is the product action set.  To 
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form a coalition subgroup of agents of size m, one endeavors to obtain a sequence of 

actions (action vector),  
1,...,i i m

a a


 for that subgroup which are mutually satisfactory. If 

P is partitioned into N coalitions, the coalition partition, denoted by 
,P N , will simply be 

called a coalition structure.  Denote by ( )Su a the collective payoff of a coalition
,P NS 

with action vector a. 

 

Definition. An action vector a, is a coalitional equilibrium (CE) for S and relative to 
,P N

if  
'( ') ( )S Su a u a for any other coalition, 

,' P NS  and action vector, 'a . 

 

CE are extensions of Nash equilibria in coalition games.  In this study, CE will be 

used as equilibria of interest.  CE exist under the following conditions: for each i, if
iA is 

nonempty, compact, and convex, and 
iu is continuous and quasi-concave, then for every 

coalition structure, 
,P N , a coalitional equilibria exists (Ray and Vohra, 1997).  Because 

CE are Nash equilibrium for singleton coalitions, they may also be non-unique (Nash 

equilibrium may be non-unique).  Additionally, transfer of payoffs within a coalition 

renders more non-uniqueness in equilibrium. A less stringent type of unique equilibrium 

is that of essentially unique: 
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Definition. Let
,( )P NU  denote the set of coalitional equilibrium payoffs associated with 

,P N . A coalitional equilibrium is essentially unique if  sets
,( , ) S

P NU S     for every

,P NS  : 

 
,

, ,( ) ( , )
P N

P N P N
S

U U S


 


   (3.1) 

If a coalition contains an agent that has achieved consciousness guru status 

separate from others, in an inception rules game, then that coalition may break up based 

on their respective selfishness.  However, a coercion team, entering an inception game as 

a de facto coalition, may also break up based on higher, more probable payoff structures 

with other coalition conflicting strategies.  The status of consciousness guru either for a 

group or an individual, usually requires multiple incursions in and out of different dream 

levels.  

In a coalition, the amount of shared resources is what is maximized in a rational 

strategy.  This resource takes the form: 

 ( )S S S i

i S

R sp w c r


   (3.2) 

where s S , S
s

S S

r
p

r r



is the relative frequency probability based on resource shares, 

Sr is the amount of resources for S, 
Sr is the amount of resources from all other 

coalitions, 
Sw is the value endowment of the collective coalition S, and ( )ic r is the 

individual cost of contributions to S (Debraj, 2007).  Resources in an inception game can 

come in the form of consciousness capital, that is, what coalition collectively is more 
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aware of where they are in the dreamscape. This capital for coalition S, can be described 

by the collective sum of probabilities, ,

, '

( ) ( )S S i j

k k i S j S

r k p k
 

    where 

,' , 'P NS S S  .  One of many possibilities for reshaping coalitions considers multi-

coalition formation, (i.e., coalitions that were formally conflicting, merge into one in 

order to optimize their collective resources R, when separately, no clear leader can be 

sustained).  Individually, agents, if conscious of other coalition resources, can jump ship 

and join another one that would optimize their relative status towards consciousness guru.  

Hence, for an individual agent, i, who is currently in coalition S,  if
'S i Sr r  , for some 

other coalition 'S S that agent is considerate of changing coalition membership.  

However, it is not clear as to what, if anything that agent would lose in such a transition. 

There could be a backlash of incidents that would affect agent i, including the possibility 

of the new coalition reaching a mega-contract agreement to penalize cross-transfers.  

That contract may enforce a consciousness penalty (individual transfer of that agent to an 

unknown dream state, not of their knowing and isolated from all coalitions involved in 

the mega-contract) to the would-be transfer. 

Two major groups are immediately at conflict in an inception, the inception team 

(coercion team) and the targeted group or individual that extracted information is being 

coveted from (inceptee team).  These two groups represent the first coalitions of a 

coalition partition in inception games.  Physically, only those coalitions can enter the 

game based on the fail safe nature of the PASIV synchronization device.  However, other 

groups may enter into an inception where members of that inception team and their 
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respective target inceptees share certain information with the first inception game agents.  

Nonetheless, these two inception games would be mutually exclusive.  Information 

transfer between the two groups of game coalitions is only possible before either engages 

in their respective inception games. 

Inception team coalitions may be broken up by selfish agents or n-agencies. 

However, the targeted (inceptee) agent may also join the inception team to form a high 

powered coalition provided that the paying client to the inception team is isolated.  This 

then becomes an isolated conflict between the payer client and the targeted agent, turned 

new payer client.  In a more restrictive version of inception, all agreements would be 

binding and irreversible. Under that scenario, the incursion into multiple dream levels to 

extract information from the target group will retain coalition structures, with the 

resource functionals dynamically changing as agents transcend dream levels. 

 In the inception game and movie, power orders within each of the relevant 

coalitions (inception team and target team) were important in of the plot unfolded and 

how the main characters were able to survive their own psychological and physical 

limitations.  Power relations can be investigated within coalition games (Piccione & 

Razin, 2009).  Utilizing strategies that are marked as strongly stable social orders results 

in long term stability of the order within each coalition, (i.e., leadership is stabilized).  In 

this case, a social power function, 
iq assigned to agent i, can be emulated using the 

cumulative consciousness probability function,  
 \ 1,2.,,, i

i lj

l S i j m

q p k
 

   .  Coalition S is 
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more powerful socially than 'S
'

i i

i S i S

q q
 

   .  Denote by  
1
,...,

Ni iS S  to be the 

social order of the coalitions in the partition, 
,P N according to the vector of social order 

functions,  1,..., nq q q .  Let ( )iV  be the social rank of the agent i induced by the social 

ordering, . 

 

Def. A deviation or shift from the social order,  , by a subset of agents, C, will result in 

a reordering of the social order as  1 \ ,..., \C nC C C C  . A deviation social order, 
C

from , induced by C is profitable if ( ) ( )i C iV V   . Define a mapping, : ( )P n   

between the set of all social orders, , and the power set of agents, P such that 

( )C   (i) C is a profitable deviation from  and (ii) there does not exist ' ( )CC  

such that (a) 'C C  and (b)  '( ) ( )i C C iV V   , for some i C . A deviation of social 

order induced by C on is durable if ( )C  .  It has been shown by Piccione and Razin 

(2009) that  is a well defined mapping.  Finally, a social order  1, , , nC C  is strongly 

socially stable if ( )   for all power social relations, q.   

 

Strong social stability is akin to Nash equilibrium because agents are 

deincentivized to change allegiances in order to climb their relative social order due to no 

advances in profitability (inception relative consciousness) scaling for their team.  One 

may then consider condition(s) on the consciousness probabilities,
, ( )i jp k where an 
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inception game can be considered strongly socially stable and hence, in the long run, 

stable with respect to leadership roles and the goals of achieving or preventing inception 

in the various coalition teams traveling through the inception dreamscape. 

Agents within a coalition, can use individual mixed strategies or coalition mixed 

strategies that are correlated (are in tune to each other’s strategy) in the sense of 

randomizing the next strategy that they will use.  If agents use individual mixed 

strategies, then it is not guaranteed that a CE exists (Haeringer, 2002).  Therefore, 

coalition correlated strategies must be used in order to have a chance at reaching a CE 

and therefore, a situation where coalitions will no longer be changing strategies towards 

their respective inception goals in inception games.  

In inception games, the inception team is endeavoring to extract or influence a 

change of decision-making on behalf of the incept team or individual.  In an epistemic 

logical approach to inception, we may invoke the processes of belief revision logical 

operators (revision, expansion, and contraction) so as to introduce changes to or novel 

injection of beliefs in the logic preference of the inceptee in such as way as to minimize 

the amount of possible added logical contradiction in the knowledge base of beliefs of 

that inceptee, thereby conservatively preserving as much of the original inceptee’s belief 

world as possible (Alchourron, Gärdenfors, & Makinson, 1985; Gärdenfors, 1992; 

Ribeiro, 2013 ).  Minimal amounts of deletion or change of epistemic propositional 

beliefs should transpire due to the potential cost of loss of valid collateral information.  

Inceptions may become more covert than overt in that case.   

Let   denote a logic system.  Belief revision (change) comes in three distinctive 
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forms: (i) expansion: an added proposition (contents of a sentence)  , is added to

without regards to inconsistent consequences and is denoted by  , (ii) revision: a new 

proposition  is added to  but makes it inconsistent , some sentences are then deleted to 

make it consistent and this new logic system is denoted  by  , and (iii) contraction: a 

set of sentences in  given by    are removed without adding  in order to make  

consistent with and this is denoted by   (Gärdenfors, 1992).  

Trivially, the construction of   is practical through simple logical operators.  

Revision and expansion present with problems not solvable by direct application of 

logical operators.  Algorithms akin to belief change operators  ,must be applied to  

based on conditions that approximate or judge rational consistency, at least for rational 

consequences.  The emergent systems considered in this study broaden this approach to 

consider boundedly rational and spectral rationality under general non-classical physical 

and logical systems.  Gabbay, Rodriques, and Russo (2007) consider belief revision 

operators for first-order non-classical logic systems and hence for paraconsistent logics 

that may refine or change rationality definitions in classical logics due to their 

preservation of inconsistent and paradoxical logic systems such as the family of LP 

logics.  Quantum superposition through a strong Zermelo-Franckel (ZF1) set theory, and 

other subclasses of Kripke Algebraic logics through other aspects of quantum systems, 

generate paraconsistent logic systems (Luisa, Chiara, and Giuntioni, 1989; Da Costa and 

De Ronde, 2013).  More recently, a parametrization of quantum logics referred to as 

paraquantum logics (PQLs) using a logical state  dependent on the propagation of the 
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degrees of evidence of the measurement stage of a quantum system, was developed (Da 

Silva Filho, 2011).  Similarly, causaloid probabilities developed in Hardy (2007), 

discussed in more detail in Appendix D and injected into the generalized framework of 

emergent versions of inception games in this study, depend on large-scale quantum-

relativistic probabilities across vast event spacetime regions and can be considered as 

paraconsistent non-temporal logics because spacetime is treated as a single manifold for 

indefinite causal structures without a separable time subdimension.  Booth and Richter 

(2012) present and display the case for fuzzy belief revision utilizing generalized Tarski 

deductive and Lulasiewicz fuzzy logics.  Zadeh’s GTU representations subsume these 

logics by their higher level constraint-based precisiation-language constructs.  Hence, 

here one may consider GTU-based belief revision systems and spaces of belief revision 

operators g based on GTU constraint objects g, including higher-order logics that would 

include higher-order paraconsistent fuzzy logics. 

We briefly mention the components involved in our generalized inception game.  

The components of an inception game will include: (i) coalition teams/agents (inceptors 

and inceptees) with possible reverese or anti-inception scenarios, (ii) inception 

information silos, (iii) payer source (client) and a payoff structure for agents to be 

distributed, (iv) inception dream levels and physical/psychical rules of engagement (time-

discounted recursions), (v) consciousness awareness thresholds for inception adcantage, 

(vi) uncertainty structure (generalized stochastics) for consciousness awareness and 

social power status for agents, (vii) risk profiles (spectral range) of agents and collective 
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coalitions and risk neighborhood size thresholds, and (viii) coalition bonding thresholds 

(propensities of agents to n-agency behavior). 

 
Figure 2 - Components of General Inception Game 

 

While inceptions are manifested by chain-events of possible belief revision 

operators changing the knowledge base belief system of the inceptee through the course 

of navigating inception levels, the target event is one of the exposure of a large enough 

chunk of insider information in those knowledge bases.  Within the resources that each 

agent possesses iR , including shared coalition-level resources,  
1,...,jC

j M
R


where M is the 

number of coalition teams in an inception game, this inception information chunk given 

by , is buried in and can be expressed as a subset of
1

j

M

C

j

R R


 .  If the inception game is 
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additive in coalitions, (i.e., the resources within a coalition team are equal to the sum of 

the individual coalition agent resources within that team) then
1 1

j

N M

i C

i j

Z R R
 

   where 

M is the total number of agents.  Under this additivity condition, let , 1,...,i iZ Z R i N 

be the individual agent resource contributions to the totality of inception information Z.   

Agent i with a social power (conscious-awareness rating) weight given by a social 

preference order, can coerce their respective part of inception information iZ , 

proportionally with respect to other agents.  Denote the agemt and coalition payoffs 

respectively as, 

 

   

    

ji

j

j

i i

i

i i

Ca

C t i

i C

a A

a i

i i t i

a A

U A Z g a

U A Z g a















  (3.3) 

where    Z ,  ,  ji i i

j

Ca a ak i i

t t t t i t t t

k C

Z Z Z f R Z f R


   ,  ig a is a GTU-based 

uncertainty operator on action ia , : , :i if R Z f R Z  are extraction functions acting on 

agent resources producing information subsets, ia i

tZ  is the extracted inception information 

as a result of action ia at time t (stage) for agent i, and ji
Ca

tZ is the extracted inception 

information as a result of action ia at time t (stage) for coalition j. 

 For the proceeding discussion on belief revision operations in inceptions we adopt 

the history-based version of gasmes structures where all agents history of action moves 

are recorded and stored as part of agent information sets.  Infomration sets are the total of 
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an agent’s information about the game and the circumstance surrounding that gaem 

including all histories of agent movement up to that point in a game stage, payoffs, and 

agents.  In a traditional general decision branching tree agents make moves sequentially.  

A particular branch path of an decision tree represents a history of agent moves.  

Decision branching trees may be translated to their analogous extensive-form game trees 

where payoffs for every agent strategy combination are displayed in general 

hypermatrices in the multi-agent case.  Information sets are then the sum total of an 

agent’s knowledge of agent’s histories, payoffs, and game structure up to that point in 

time (game stage).  These information sets consist of individual information subsets that 

display the agent payoffs for a particular history path.  Belief revision operators, as 

discussed in this study, will then be applied to these information sets which represent 

agent belief systems about the game. 

 
Figure 3 - Decision and Game Tree Branching 
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Belief revision of agent strategies are applications of belief revision operators on the 

belief systems of the opposition in inceptions.  General belief revision are compositions 

of single belief revision operators.  Each agent action can then be equted with a 

composition of belief revision operators, 

   1 ... :k

j j

jjj u

i i i i C Ca B B       (3.4) 

Strategies are mixed action profiles through stages of game transitions  1,..., ,...i ks b b , 

where kb is the k-th stage profile action as a GTU-based mixture    
1

k
L

k i j j j

j

b g A w g a


  , 

for some weighted sum of GTU distributed actions in a simple linear case.   These 

epistemic belief systems in games can be viewed as agent beliefs about past histories of 

moves.  These past decision histories iH , are a component of finite extensive games, 

along with an equivalence relation for those histories i i N
 that define history classes 

where actions are taken without regard to a history in that class.   

We closely follow the development of AGM-consistent belief revision from 

Bonnano (2011) before extending those results to the more general case of GTU-based 

uncertainty operator revision in inception games.  Define an assessment as a pair  ,  , 

where is a strategy profile and  is a belief system on those profiles.  Assessments are 

the basis for updatable epistemic games.  Belief systems are updated using a Bayesian 

procedure or GTU-based updating scheme that generalizes Bayesian updating by the 

information set iI , of the agent’s accessible nodes in the equivalent game decision tree.  
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Each information set iI , denotes the sum total of the agent’s knowledge of the universe.  

Nonetheless, compatibility between the strategy profiles and the belief system about 

those profiles must be present for a consistent approach to epistemic game solutions and 

revisioning.  Compatibility between and  can be quantified by the concept of KW-

consistency -  there exists an infinite sequence of mixed strategy profiles  
1,...i i




such that

   lim , ,u

i i
i

   


  where u

i  is the updated belief system of i  which is associated with 

the strategy profile i  (Kreps and Wilson, 1982).  More recently, a more practical type of 

assessment compatibility was developed, the AGM-consistently, which is associated with 

the idea of the semantically powerful and minimally invasive AGM belief update revision 

framework (Alchourron, Gärdenfors, and Makinson, 1985).  AGM-consistency is based 

on a plausibility order on the space of all agent histories of actions  
1,...,i i N

H H


 as a 

means of imposing a total pre-order on comparing those histories, (i.e.,binary relations 

H H  which are complete and transitive). 

 

Def. The assessment  ,   is AGM-consistent if (i)   0 ~  [w.r.t  ]a h ha    and 

(ii)    ,  0 ', 'h D h h h h I h      , where  a is the probability of action a as 

assigned by , ha is the history sequence h followed by action a ,  h  ia the probability 

of history h as assigned by , and  I h  is the set of histories with the same information 

set as h.  
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If  makes the assessment  ,  , AGM-consistent, then  is said to rationalize  ,  . 

 ,  is said to be Bayesian relative to if for every  equivalent class E, there exists a 

probability measure  : 0,1E H   such that (i)  ESupp E  and (ii) if , 'h h E  and h 

is a prefix of 'h  then        ' ...i mE Eh h a a       and (iii) for every information 

set I such that Min I E and for every    
 

 
, |

E

E

E

h
h I h h I

I


 


    where

 : ', 'h I h h h IMin I    .   

 

Def. An assessment  ,  is Bayesian AGM-consistent  if it is rationalized by a 

plausibility order   and it is Bayesian relative to . 

 

Def.  ,   is a perfect Bayesian equilibrium if it is Bayesian AGM-consistent and 

sequentially rational.  

 

Perfect Bayesian equilibrium  subgame-perfect equilibrium and sequential equilibrium

  perfect Bayesian equilibrium.  Hence perfect Bayesian equilibrium is intermediate 

between subgame-perfect and sequential equilibrium. 
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Result: Every finite extensive-form game G (and hence every finite decision game tree

 G based on G) has at least one perfect Bayesian equilibrium assessment  ,  .  

 Belief revision operators , act on propositions (sentence contents) in a belief 

(logic) system B, by one of three broad categories: (i) expansion denoted as B  , (ii) 

revision, B   , and (iii) contraction, B  .  Revision and contraction require belief 

revision operators to be minimally invasive (i.e., conserve as much as possible, logical 

consistency within the updated belief system to B, denoted as uB , according to the 

epistemic AGM-consistency framework. Let denote the set of formulas in a 

propositional language L which is based on a countable set of atoms, S.  Subsets K 

have deductive closures denoted by K . K is closed if K K and is consistent if

 K   .  Formally, an agemt’s initial belief system is consistent and closed but is 

exposed to subsequent information given by .  A belief revision function based on 

K is a function : 2KB   such that   ,KB    .  If  , then it is a partial 

belief revision.  Otherwise, if  , it is a full belief revision.  If KB satisfies the aGM 

postulates as given in Alchourron, Gärdenfors, and Makinson (1985), then it is an AGM 

belief revision function.  Nonetheless one must reconscile belief revision syntactically in 

propositional languages with that in set-theoretic game structures.  Choice frames (from 

rational choice theory) bridge these two concepts and serve as the link needed for our 

treatment of generalized belief revision systems. 
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Def. The triplet  , ,C f  , where  is a set of states and subsets of them are 

events, 2  is a collection of non-null events in  , and ; 2f   is a function the 

associates events with non-null events  f E satisfying  f E E , is called a choice 

frame triplet.  Interpret E    as the available alternatives (potential information) and

 f E as the chosen alternatives which are doxastically (believably) possible. 

We define a condition to be imposed on the histories of agents. 

 

Condition C:    , , ,  if then i ii N h D a A h h D ha D        , where D is the profile 

decision space for all agents and iD is the profile decision space for agent i, (i.e., no 

consecutive actions by any agent).  In the case of inceptions, one can compose a series of 

actions into one actionable move.  

 

 We now associate models with choice frames through valuations of atomic 

formuli : 2v S  , which map formuli to the states that are true under them.  A model is 

then the quadruple  , , ,M f v  and is an interpretation of the choice frame

 , ,C f  . 

 

Def. A choice frame  , ,C f  is AGM-consistent if for every model M based on it, 

partial belief functions
MKB , associated with M, can be extended to full belief functions 
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that are AGM belief functions.  Here   :M M
K f     ,

     truth set of formulas : | MM
M         and | M   means that is 

true at state in model M.   , ,C f  is rationalizable if there exists a total pre-order  

 on  such that for every E ,    : ', 'f E E E       , where the total pre-

order '   is interpreted as  is at least as plausible as ' .  f E  is thus the set of most 

plausible states in E. 

 

One may then build partial belief revision functions as: 

       : 2 , : , :
M MK M M KM M M

B B f                (3.5) 

 

Result:  , ,C f  is AGM-consistent  C is rationalizable. 

  

Now let
i

 denote the set of total pre-prders that rationalize a game choice frame

  , ,i i i N
H f


and additionally satisfies condition PL1 and PL2i of Bonnano (2011).  

Define a game common prior by
i

i N

  (common initial beliefs and disposition to 

change those beliefs in a game setting).  Here H denotes the agent game histories of 

strategy movement and   ,i i i N
f


 denotes the belief and dispositions to change those 

beliefs about those game strategies. 
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Result: A game choice profile given by   , ,i i i N
H f


admists a game common prior if 

there exists a total pre-order  on H that rationalizes the belief of all agents and satisfies 

the conditions PL1 and PL2i for each agent, (i.e.,   ).  

 

Main result: Let an extensive form game (and hence a game tree) satisfying condition C 

be given by G (  G ).  Let   , ,i i i N
H f


be  a profile of AGM-consistent choice frames 

for the initial beliefs and disposition to change those beliefs for all agents in G.  If

  , ,i i i N
H f


admits a common prior, (i.e.,   ) then every common prior p , is  

a plausibility order and hence is a belief revision operator for G.   

 

More generally, belief revision operators based on GTU constraints g, denoted by

g , acting on inception game belief systems B, can represent very general belief revision 

uncertainty schema including Dempster-Shafer, Zadeh possibility distributions, quantum 

probabilities, quantum-gravity causaloids, Bayesian causal nets, fuzzy belief functions, 

rough set approximated belief functions, classical probabilities, first-order and higher-

order logics, including paraconsistent systems.  Composed GTU-based belief operators 

can then be constructed to form generalized belief revision operators where each 

component operator satisfies conditions of AGM-consistency and existence of common 

priors as above, resulting in generalized game agent actions of the form: 
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     1

1 ... :k

j j

jj u

i i i k C Ca g g g B B   , where  1,..., kg g g  is a GTU-based 

constraint vector scheme for k cascaded (composed) agent behavior revision operators. 

We now investigate a separate general statistical mechanism for updating beliefs 

about agent strategy profiles where GTU-based operators are utilized instead of strictly 

classical probabilities.  Agent belief systems B, which are knowledge bases of 

propositions, may be updated more precisely in a statistically robust manner, based on 

GTU-based belief revision operators g , and a finite sample of N experimental runs, 

using generalized likelihood-type transformations
g

 , that in turn, utilize updated 

information at stage k, given by kI , as in Bayesian approaches to forming posteriori 

probability distribution.  Propositions B , which may be treated as general uncertainty 

distributions or rules in and of themselves, are transformed to another rule/distribution 

proposition  ,i

N

g 
 , by the likelihood operator that is based on a GTU-based 

distribution/rule  ,i g  , for agent i, and N samples,    , ,i i

N N

g g   
   .  In this 

formalism,  ,i g   entails a general object parameterization .  

Chained compositions of belief revision operators can be interpreted as recursive 

likelihoods, (i.e., given updated information in each inception level, a chain of 

uncertainties about uncertainties are generated).  We refer to these chains as higher-order 

beliefs.  Inception strategies are then profiles of GTU mixed actions whichas chained 

compositions of GTU-based likelihood-type transformations of belief system 

propositions. 
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Given a threshold , defining a safety margin from consciousness awareness 

advantage of one agent over another or of a coalition agency, computing inception game 

equilibria (or any other equilibira type) resembles a Schilling type of model of 

segregation model dynamic (Schilling, 1969).  More recnt results show that segregation 

or end game social habitation convergence depends on neighborhood sizes and 

psychological segregation thresholds of happiness (Barmpalias, Elwes, and Lewis-Pye, 

2013).  See the section on morphogenesis approaches to game equilbira in this study for 

details.  Inception neighborhoods are those areas that influence an agent directly from 

individual agents and coalition inceptions and information exchanges from such 

phenomena.  

Agent belief operators are dependent on agent (and coalition) social power which 

is indicated by consciousness-awareness, as defined earlier in this study.  To review, 

consciousness-awareness is the relative ability to know that you are in a certain conscious 

(inception) level, while others do not.  We now generalize our earlier definition of 

probabilistic consciousness-awareness to GTU constraints iG for an agent i:  

 
 , GTU uncertainty that agent  knows consciousness awareness

  of agent  in agent 's inception level 

iG j k i

k i j


  (3.6) 

 
Figure 4 - Agent consciousness-awareness interaction 
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Agent i revises the belief system of agent k in inception level j if and only if

   , ,i kG j k G j i    for some threshold .     , , , ,iG j k i j k induces a preference 

ordering for belief revision operations and hence for strategy execution.  Bawed on social 

power preference, a weighing of influence will affect extraction of the portion of the 

inception information from an agent’s influence neighborhood through belief revision 

operators acting on the inceptee’s belief system and hence on the consciousness-

awareness uncertainties  ,iG j k . On then tests for the threshold condition: 

            1

?

1 ... : , , ,vjj g

i i i v i i ka g g g G j k G j k G j i        (3.7) 

  

The knowledge that an agent is aware of an inception attempt happens when the 

probability (GTU uncertainty) of consciousness awareness over another agent is within a 

threshold (but not greater) and other agents attempt inceptions against that agent: 

      , , ,k i kG j i G j k G j i      (3.8) 

This situation is akin to asymmetrical agent information, biases against any 

attempted belief revision, no matter the truth value, T (or truth membership value) of the 

belief revision operator(s) update on B of the inceptee.  Hence, the aprior agent 

knowledge of an outside inception weighs against any belief revision attempt, regardless 

of belief revision update AGM-consistency, as discussed earlier.  On the other hand, if an 

inception is anticipated, but no such attempt is actually made, the agent is less likely to 
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accept useful information from other agents in information exchanges pertaining to other 

inceptions (intra-coalition and favorable n-agency exchanges). 

Epistemic effects from inceptions include truthfulness vigilance – the propensity 

to initially trust and follow through with stronger verification in the later stages of 

interaction and decision-making regardless of trusting history.  Gilbert (1991) posited that 

a Spinozoan unity doctrine , of initial belief in a proposition is necessary in order to 

commence understanding (and veracity) of that proposition in a belief system.  

Moreoever, in general, initial doubt or unacceptance of a proposition is harder to 

materialize than its initial acceptance.  More recent research has shown that a suspended 

belief – a conditional Cartesian doctrine –  is more likely in an initial understanding of 

propositions with informative priors (Hasson, Simmons, and Todorov, 2005).  Hybrid 

Cartozan frameworks  , in which comprehension followed by temporary acceptance 

and then possible rejection are also posited.  Epistemic vigilance may be more likely a 

scenario following an initial acceptance after comprehension.  Here, we propose that a 

recursive evolutionary process takes place that manifests in possibly chaotic or 

recursively fractal regions of attraction between and using belief evision meta-

theories with GTU-based belief revision oeprators g , as discussed before.  We choose 

GTU operators for the atomic operators of belief change because of their generality in 

representing vast diversities of logic systems for uncertainty. 

Understanding a proposition is more mechanical (e.g., computing complexity 

measures) than believing it (e.g., surmising if a belief proposition is AGM-consistent 
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within a belief system).  We consider the inception model as a meta-type for a game 

involving recursive belief revision through time-discounted inception levels (to be 

discussed in the next section) and application of GTU-based belief revision operators to 

the belief systems of coalition agents involved in an inception attempt.  Coalitional belief 

equilibria are possible under conditions of informative common priors on agent initial 

belief systems and dispositions to change those beliefs through assessments  ,  , 

which are Bayesian AGM-consistent within the extensive form of an inception game.  

The concept introduced in this study known as  inceptions, are the more likely 

behavior solutions in inceptions where perturbations between regions of and doctrinal 

behaviorial tendency on beliefs of common priors.   prior beliefs lead to belief 

revision operators that initially support, with certitude, the truth values of the status quo 

propositions being challenged in inceptions.   prior beliefs lead to initial support, with 

certitude, the false value of status quo propositions in inceptions.  

In a GTU-based belief revision regime, a spectrum of initial belief in status quo 

propositions in inceptions is created based on the common prior distributions’ 

informativeness of those propositions.  We denote thos spectral measure of epistemic 

belief doctrines by .  This measure may be a complex of objects rather than a simple 

scaled number.  We can then ceate an approximate simplifying normalized number based 

on this complex  S C  , that measures a divergence of the ensuing initial prior support 

for status quo propositions that goven agent beliefs about other agents’ strategies, ranging 

from an  to a  like doctrine.  
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Figure 5 - Spinozan-Cartesian Spectrum 

 

In infinite games such as conceptual inceptions, strategy near-solutions may cycle 

in regions in the S-C spectrum.  The inception information sets of the agents may dictate 

certain regions of attractions and hence of certain beief doctrin spectral subregions,  

Common informative priors of agent s are candidates for inceptions and for manifesting 

well-defined belief doctrine spectral measurements.  Nonetheless, how would one 

measure belief revision potential on the S-C spectrum?  In inceptions, the end game value 

(payoff) is the information that is sought after and an ensuing chaning of the “hearts and 

minds” of the inceptee.  We assume the initial belief systems of the coalition agents are 

the target.  Belief revision operators are applied to those belief systems.  The common 

priors to those initial beliefs are then the baseline for belief revision movement.  Belief 

revision operators or subsequent priors to an agent’s belief system then result in an 

updated agent belief system.  In a Spinozan doctrine, those belief revisions are not 

changed as much (if at all) as those from a Cartesian doctrine because acceptance of the 

initial beliefs is more likely froma Spinozan than a Cartesian or evn a Cartozan.  

Therefore, a metric that would measure a distinction of this initial movement would be a 

divergence measure between priors after and before a belief revision operation.  A 

candidate for this divergence would be a Csiszar f-divergence which is a generalization of 
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the KL-divergence between probability measures.  We generalize this divergence to 

measure differences between GTU-based uncertainty operators. Define a Csiszar-

Morimoto-Ali-Silvey (CMAS)-generalized divergence between an initial prior p and its 

belief revision update up for each p : 

  , ,f w u u

g g u

dp
D p p tr wf dp

dp

  
   

  
  (3.9) 

An accumulated (total) divergence between prior spaces and u , may then be formed 

as: 

  , ,T f w u u

g g u
p

dp
D tr wf dp

dp

  
   

  
   (3.10) 

We symmeterize this total divergence using the weighted Jenson-Shannon divergence 

scheme to obtain a final metric for prior spaces: 

        , , ,, , 1 ,f w u T f w u T f w u

g g gD D D      (3.11) 

 for 0,1 .   We now define a unit norm on the space of possible belief priors : 

 
 

 
  

,

,

\

,

sup ,

T f w U

g

T f w

g

D

D









   (3.12) 

 where U is the belief system updated after uniform priors are applied as belief revision 

operators to all individual agent priors in .  One may then define a normed unit spectral 

measure for on  S C  by applying the unit norm above to get, 

 


   (3.13) 
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so that for any ,  0 1   .  

 In our discussions of belief revision, we concluded with the dependence of 

epistemic common priors existing as one major condition for belief revision to be 

plausible.  Bayesian updating of GTU distributions remained the mechanism for these 

updated revisions.  However, Bayesian priors remain controversial with respect to the 

ultimate arbiter of who revises or chooses them in the updating scheme and of their 

overall effectiveness and potential overconfidence exercised by Bayesian decision-

makers (Bowers and Davis, 2012a; 2012b;  Griffiths, Chater, Norris, and Pouget, 2012).  

Given that Bayesian updating using reliable consecutive priors leads to more accurate 

prognostication based on the asymptotic probabilistic robustness of those updated priors, 

calibration of those priors and hence, of the arbiter of those priors is necessary to retain a 

convergence to truer models of reality.  In this section we iterate some recent discussion 

on the calibration process for Bayesian decision-makers.  Mannes and Moore (2013) in a 

recent series of experiments conclude that underscoring the precision of decision-making 

agents from past histories of updating revisions improves the progrnostication record of 

those DMs.  Additionally, they point to the introduction of certain amounts of alternative 

beliefs in the space of priors as a way of normalizing confidence.  Inception priors may 

be more precise by flattening agent prediction egos through these two calibration 

correction techniques.  The use of a diversity of uncertainty operators for a larger amount 

of situational epochs, (i.e., the use of the full power of GTU constraint representations, 
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mixing,a nd application) may also be advised for inception-like games of conflict in order 

to achieve a modest amount of probability calibration for DMs.  

 Calibrated decision-makers lead to better measurements of risk. To this end, we 

need to form a real-time or stage-updated comprehensive and multi-dimensional risk 

measurement object during game play that takes into account aspects of uncertainty 

operators and scenarios, more complete information sets, and consistent calibration of 

agents.  This risk object must be communicated to the DM in a more natural, ubiquitous, 

and instantaneously comprehensive manner.  This is the subject of the third part of this 

study, a more effective means to convey risk via multi-sensorial mappings of risk 

components to the sensorium of DMs.  Risk measurement and visualization in inception 

strategy dynamics involve an overall risk metric or manifold that is a multi-dimensional 

assessment of risk related components which include: (i) expcted utility values at stages 

or time epochs (w.r.t. GTU-based uncertainty operators), (ii) psychologically assigned 

belief weights toutilities, uncertainties, and payoffs, (iii) coalition partition preferences 

(who do you want to prosper or lose reagardless of your situation), (iv) risk tolerance – 

thresholds on a spectrum of risk-aversion/aggression (fear/confidence), (v) statistical and 

computational error tolerances of quantitative risk measurements, (vi) targeted Lipschitz 

game effects on agents or groups (similar to iii. above), (vii) size and makeup of 

coalitions, ( viii) risk capacity – th relative resource reservoir (loss absorption capacity), 

(ix) time horizon of play endurance (time expanded fluctuation and volatility smearing), 

(x) risk efficiency (vs. utility), also called efficiency frontier (modern portfolio theory 
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[MPT] curve of optimal utility vs. risk), and (xi) confounded effects between the above 

factors, (i.e., resource size vs. risk tolerance). 

 We propose a novel approach to uncertainty in risk – a generalized risk 

measurement through composition of belief revision operators (likelihoods L) that result 

in cascaded GTU-based operators (diversity and recusion of uncertainty types) given by: 

 
       

     
11 1,..., ,...,

... :

, E L , |  (generalized risk operator)

k k k

u

gg g g g g

u u

g g g kg g
R B B I

 

 

    

 

 

 
 

  (3.14) 

based on the k-th stage information extraction (partial inception) kI , updated belief 

system u

gB , and the composite belief operator (action taken)
 g

 .    

Time dilation models within the inception concept will be studied next.  Each 

inception level dilates the relative time scale and hence makes possible computational 

speedup and so, should be considered time discounted recursive games because (i) each 

inception level is a new game module with input from the prior level and output to the 

next level, and has an option to jettison back to some original lower level (or reality 

level), and (ii) speedup of computation in each successive level can be translated to 

increased payoff increases in information, knowledge, and influence garnishment.   

Very general physics-based forms of automata are investigated as models for 

recursive games in view of work that has shown an equivalence between recursive state 

pushdown automaton modular calls and two-agent recursive game winning strategies 

(Alur, La Torre, & Madhusudam, 2003; 2006).  Inceptions are two-coalition games and 
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can be considered as a coalition extension of two-agent games.  We generalize inception 

models by utilizing those general automata models to be discussed and expanded on here.   

The generality of the cumulative consciousness function 
iq , will be considered 

when utilizing Zadeh’s general theory of uncertainty (GTU) to express models.  In the 

end, generalized uncertainty evolutionary models of automata will be considered as 

prototypes for inception games.  Game payoffs , in these generalizations will be in the 

form of GTU-based consciousness functions.  In this manner, a further generalization 

metamodel for inceptions will be GTU-based evolutionary recursive automata.  

Inception Spacetime Models 

 

  According to the Inception concept movie, a time dilation/expansion occurs 

between dream levels, in addition to spacetime physics configurations not honored in 

prior levels.  It was stated (in the movie) that an approximate 12 fold factor occurs 

descending from one level to the lower adjacent one.  Denote a dream level by 
iL where i 

signifies the dream level descension from a reality level of 0.  Table 1 below displays the 

consistent movie dialogue implications and an exponential fit for time dilation/expansion 

between dream levels.  Because of the uncertainty and ambiguity in the way the mind 

perceives hallucinatory and dream time, there will exist inconsistencies in logical time 

translations. Hence, these are merely approximate time translations using experiential 

evidence (from the character dialogue in the movie) and an exponential model for more 

consistent discussion (Proces, 2010). 
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Table 1 - Inception time dilation/expansion (in min with time relative to 
0L level) 

Dream 

level 

Time (according 

to Ariadne 

character, factor 

12) 

Time (according to 

Arthur character, 

factor 20 (closer to 

22) 

Time (using 

overall data 

from scenes) 

Predicted time from exponential 

fit: l level, t time, 
3.048( , ) (0.92293) lg t l te  

0 1 1 1 .92 

1 12 20 (22) 16.8 19 

2 144 400 (484) 432 410 

3 1728 8000 (10648) 8760 8637 

4 (limbo) 20736 160000 (234254) ? 182008 

 

Time expansion into a descended dream level presents with a marked advantage 

for the inception traveler because what-if scenarios can be simulated in dream level time 

frames while allowing for mere fractions of that dream time in level 0 reality.  This can 

be viewed as a hyper-speed computational simulation in which modeling is achieved 

without laborious and time consuming data collection and analysis.  Simulation-based 

modeling, such as can be done in generalized Monte Carlo simulations (Holmes, Gray, & 

Isbell, 2009), where probability distributions are generalized to distribute more 

possibilities, is a means to emulate inception what-if events. In the movie, limbo time is 

equated with 
4L . However, here we will consider general levels, (i.e., the only true limbo 

is achieved by observing behavior at 
jL as j ).  Biological time becomes 

computational time in inception simulations for what-if scenarios.  

Using a generalized exponential fit for computing absolute level times in 
lL , 

given by ( , ) btg t l ale k  , one may then approximate the inception movie time frame 

simulation. This then sufficed to solve certain types of prognostication in 
0L .  Compute 

time in
0L remains tractable, while the corresponding compute time in 

lL becomes 

intractable as l  .  In our abstraction of inception, ( , )g t l is further generalized to fit 
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certain hypercomputation models, most notably Zeno-type execution speedups where 

infinite numbers of computational steps are performed in finite times and hence, solving 

the halting problem in finite time as well  (Weyl, 1949; Copeland, 2004).  Gravity-

relativistic time dilation according to the Schwarzchild solution to the Einstein field 

equations for relativity, utilizing the Schwarzchild metric, is expressed as 

 

1
2 2 2

2 2

2 2 2

2 2
1 1i i

E c

i i

GM GM dx dy dz
dt dt

rc rc c



      
        

    
  (4.1) 

leading to the time dilation (contraction) ratio  , , , ,cdx dy dz dt U
 ,  

  

1
22 2

, , , , 2 2 2

2
1 1

2c

E r

dx dy dz dt U

c

dt vU v c

dt c c U c




 
      

 
  (4.2) 

where 
Edt is an increment of time as recorded by an internal frame,

Edt is an increment of 

time as measured by an independent clock’s coordinate system,  , ,dx dy dz  are 

corresponding spatial increments in the clock’s system, 
2 2 2

2

2

c

dx dy dz
v

dt

 
 the 

coordinate velocity of the clock, 
rv  the radial velocity, and i

i

GM
U

r
  is the sum of the 

local Newtonian gravitational potentials from masses with distances 
ir  from the 

measuring clock (Ashby, 2002).  We thus thrust a more general notion of time dilation 

into inception levels using the inception level time function,  

    , ,

1

, , , , , , , ,
( , )

l l l l c l l l l l c ldx dy dz dt U dx dy dz dt U
g t l t k     (4.3) 
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where for inception level l, the spacetime coordinate increments are 
,, , ,l l l l cdx dy dz dt

 
 
 

with 

local Newtonian potential 
lU and 

 ,, , , ,l l l l c ldx dy dz dt U
k is the sum of possible quantum 

fluctuation errors caused by the quantum foam perturbation of time with very small sub-

Planck length interaction.  Recent experiments have shown that the quantum foam 

perturbation effects may be at sub-Planck length scale (
35

3
1.61619997 10

p

G
l m

c


    ) 

and hence that spacetime is smoother than first thought by quantum physicists (Nemiroff, 

Connolly, Holmes, & Kostinski, 2012). Each inception level will then represent a 

succeeding level of very distant gravitational lensing, chained from the meta-reality of an 

original clock to further out levels of relativistic time-contracted regions. Inception levels 

are then, at least, separated by spacetime light cone horizons. In this framing, a concept 

of negative indexing of inception levels is introduced to mean hyper-reality or super-

chains above the relative origin of consciousness of an agent of further time-dilated light 

cone horizons.  Hyper-reality or hyper-inception negative levels are then equated with 

time contraction, while sub-reality is equated with higher positive inception levels of 

dilated time.   

Notwithstanding recent developments and confirmation of middle-scale qubit (> 

100-qubit arrays) QM computation in D-Wave machines utilizing quantum annealing 

algorithms in Boixoes, Albash, Spedalieri, Chancellor, and Lider (2013), technical 

speculation from researchers of near-future practical large-scale quantum computers 

utilizing the theory of closed timelike curves (CTCs) in general relativity and quantum 
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gravity, may manifest the development of hypercomputational, near superluminal 

machines (Aaronson and Watrous, 2008).  This class of machines may potentially 

provide answers to computationally hard questions (NP-complete as such) in the far 

future and then relay those answers back to the past, to the origin of those inquiries – 

hence time travel messages of solutions to the original computing mechanism in the past.  

To elude the grandparent paradox of backward time travel, (i.e., the paradox of traveling 

back to eliminate one’s ancestors and having the capability to return to the current time 

without any path to conception), one constrains the region of spacetime where a causal 

consistency exists – a fixed point of some evolution operator in the evolution of the 

quantum state backwards, the Deutsch resolution (Deutsch, D. (1991). CTC-based 

automata (CTCAs) if CTCs exist and CTCAs can be built, were shown to solve PSPACE 

problems –  problems needing polynomial amounts of memory with possibly EXPTIME 

time resources, using conventional circuitry – making space and time exchangeable as 

computational resources and hence as an alternative to quantum gravity computers that 

rely on SPACETIME resources. However, it was also shown that quantum CTCAs are no 

more efficient (powerful) than classical ones for solving PSPACE problems if CTCs can 

be shown to exist and then utilized to build such CTCAs.  In this sense, if quantum 

gravity can be realized through the use of CTCs, classical machines would suffice for 

PSPACE problems which contain NP problems.  We now briefly look at incremental 

computational differentiation between inception levels and what this may mean for 

speedup times. 
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Let j l and denote the compute time for a simulated event, E, in level l, using 

automaton m, by ( , )mC E l . Then  

           , ,

1

, , , , , , , ,
, , , ,

j j j t j l j j j t j t
m m mdx dy dz dt U dx dy dz dt U

C E j g C E l j C E l k      (4.4) 

The time computation advantage, ( , , , )E m j l , given an automaton m and event E, of 

entering level j from level l is 

 

     

    

 

,

,

1

, , , ,

, , , ,

, , , , ,

1 ,

 

j j j t j j

j j j t j j

m m

mdx dy dz dt U

dx dy dz dt U

E m j l C E j C E l

C E l

k

 

  

 



  (4.5) 

Hence, if an event E requires more computational time than is possible within the 

confines of a time deadline of 
lt in its level

lL , then by entering into level
jL from level 

lL

, if 

        ,l ,l

1

, , , , , , , ,
, , , ,

l l l t l l l l t l
m l ldx dy dz dt U dx dy dz dt U

E m j l C E l t t k t         (4.6) 

or using (4.5) and (4.4), if 

  
  
 

,l

,

, , , ,

1

, , , ,

,
2

l l l t l

j j j t j j

l dx dy dz dt U

m

dx dy dz dt U

t k
C E l

 





  (4.7) 

the computation may be achieved for retrieval before the deadline expires in
lL .  Let the 

class of all events, E in level
lL using machine m where this is true for some finite j l be 

denoted by ( , , )M E l m .  Then an inception agent in level 
lL , with knowledge of machine 
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m, wanting to simulate event E for purposes of information extraction, can do so 

eventually in some level j l provided ( , , )M E l m  .   

In a discussion on time-discounted games (stochastic or deterministic) in 

Appendix B, discounts on future payoffs are given based on hyperbolic and subadditive 

discount factors.  This discount scheme relates to the propensity of humans to 

underweight current period discounts compared to future period discounts and to the 

length of periods when payoffs are calculated (Read, 2001).  In the general relativistic 

time computation resource advantage given by (4.5),  time discounts can be given 

proportional to  , , ,E m j l –the computational resource differential between 

interception levels j lL L .  Assuming a simplified Markovian game (stationary and 

memoryless stochastic game) with infinite possible levels (stages) as a first model for 

inceptions, using (4.40) of Appendix B, one may write the cumulative payoff to an agent 

i , accounting for time discounting as proposed above going from inception level j to 

level l, utilizing the automaton m available at inception level j, 

   
   

  
,

, , , ,

1

, lim
1 , , ,

ia si

k r m l j r
j l

m

E R t
v a s t

k E m j l






  


 
   (4.8) 

Again see Appendix B, equation (4.40) for parameter details.  However, inceptions are 

being modeled at face value as recursive games, a special kind of stochastic game where 

the only terminating plays are when one escapes levels with an inception (for the 

inception coalition).  We will define our generalized version of an recursive game later in 

this section. 



 

81 

 

 

Evolutionary games in which action time through the evolution of introducing 

different (mutant) strategies from having more computational results, correlates directly 

with payoff, as in an inception game, will then possess possible dominant strategies if 

inception has been isolated to a closed group of co-opetive coalitions (Weibull, 1997).  In 

that case, strategies invoked in the inception game must be evolutionarily stable (ES) for 

there to be asymptotically stable development in the inception.  Coalitions in an inception 

game are equated with coercion teams that are sent into inception levels to extract 

information from other individuals or groups of interest to a paying client.  We next 

investigate how emergent automata may emulate inceptions and their proposed decision 

structure as recursive games. 

 While these models for time dilation emulate inception level relativistic effects, 

spacetime-gravity physics are also modified.  Gravity plays a large part in the alternative 

physics that transpires from one level to another.  More appropriate spacetime models 

should include both large-scale gravitational and micro-scale quantum mechanical 

effects.  To this end, we will consider proposed quantum-gravity (QG) models for 

inception levels, mostly through the lens of a generalized probabilistic approach named 

causaloids from Hardy (2007).  Other models of QG will be considered in very brief 

passing such as Superstring (M-theoretic) and pre-geometric frameworks later in this 

study.  We will now turn our attention to how computational models in the form of 

generalized automata may frame inceptions and how this will establish an equivalence 

utilized to establish reasonable game strategy types for inceptions. 
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Emergent Automata and Inception Games 

Finite automata (finite state machines, FSMs) are given by a 5-tuple 

 , , , ,Q A E I F  where Q is the set of states of the machine, A is the acceptable 

alphabet, E Q A Q    is the set of transitions, and ,I F Q are respectively the set of 

initial and final states.   where   is the space of all automata (with possibly 

infinite states and/or alphabets).  Ulam and von Neumann developed the concept of 

cellular automata (CA), in a sense, generalizing finite automata by allowing for more 

flexible policies for changing states and by extending the reach of influence of a cell state 

to (possibly) non-local, finite n-dimensional generalized lattices of cells (Bianlynicki-

Birula & Bialynicka-Birula, 2004).  Each cell can be viewed as a FSM.  A synchronized 

clock then counts time intervals and all cells change state according to the transition rules 

of the CA.  Traditional CAs have localized causality, that is, cells are influenced by the 

state change of its topological neighbor FSMs.  However, CAs may be generalized to 

include non-local causality according to some generalized transition rule which may 

include quantum entanglement or long-range relativistic effects in the case of quantum or 

quantum gravity-type CAs.   

Formally, a cellular automata is given by the 4-tuple  , , ,nZ S N f  where Zn is an 

n-dimensional lattice (finite or infinite grid) of cells (each with FSM characteristics), S is 

a finite set of cell states, N is a topological neighborhood, and f is a transition function 

defined by a transition rule and acting on the neighborhood around each cell (Garcia-

Morales, 2012). The global state of a CA is called a configuration, nZ
c S  where 
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S k   . The position of a cell on the lattice is given by a position index 
nx Z .  In 

general, the multi-coordinate position index x, is ordered via a lattice ordering and a 

configuration c, can be expressed by this ordering through a string representation 

 
1 0 1

... ...x x xc c c c


 .  If a finite subset of cells *Z  of the lattice Zn are considered, a 

corresponding finite configuration for *Z  can be expressed similarly as   * * *
0 1

* ...
nx x x

c c c c  

where *, 0,1, , , ,ix i n  are the lattice ordering for cells in *Z .  The topological 

neighborhood N, defines the template for overlaying a neighborhood Nx, on a cell 
xc

using relative multi-coordinate positioning indices,  
0,1,...,

,
iy

i m
N n m N


   where the

iyn

are n-D coordinates describing the extent points of the neighborhood template N.   

Applying a neighborhood template to a cell
xc , one obtains the cell neighborhood 

configuration, 
21

...
x y y ym

c x n x n x nn c c c   . The dynamic transition of cell 
xc state at time t, 

denoted by t

xc  to the next time increment state 1t

xc   is given by  1

x

t

x cc f n  , the local 

transition rule. The CA evolves based on the iteration   1

1

t t

n nc f g c

   where g defines 

the time-neighborhood to consider in the transitions, (i.e.,    
t

t s

s N
g n n


 , for some set

tN that defines time indices around t ).  Here tn  is a time-neighborhood anchored around 

time t.   The global transfer for this group-induced CA follows as before.  The global 

transition function (rule), F, would then be expressed as the simultaneous application of 

the local transition rule to each cell at time t,  1t tC F C   where 
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       
1 11 1... ... ... ...

x x xx x x c c cF c c c f n f n f n
  

 
 

. The transitions in CAs can be 

generalized based on Markov processes where memory extends past one time increment 

and further, on Zadeh GTU constraints. Consider a GTU constraint, G. Express the local 

transitions as   1

x

t t

x cc G g n  .  The corresponding global transition rule 
GG  follows, 

 1t t

GC G C    where 

           
1 1

1 1... ... ...G ...
c c cx x x

t t t t t t

G x x xG c c c g n G g n G g n
 

 
 
  

  (4.9) 

See Appendix B for details on Zadeh GTU constraints G. For finite CAs, transitions that 

overlap on boundaries can be wrapped around in a closed lattice mending at those 

boundaries or by using cyclical positioning via modulo operators.  In a final 

generalization to CAs, one can consider the space of configurations associated with a CA, 

HC A where H is a finitely generated group and A is an alphabet (Ceccherini-Silberstein 

& Coornaert, 2010). The group H defines much more general configurations than spatial 

sequences.  The configuration space C is considered the phase space of evolutions for the 

CA expressed as a dynamical system (Capobianco, 2008).  The lattice structure is 

provided by a Cayley graph of H.  Then the CA can be equated with a continuous map, 

:f C C which commutes with the group action of H.  We will next review pushdown 

automata (PDA) and later consider the extension of CAs where each cell is a PDA, in 

order to produce a pushdown cellular automata (PDCA) in consideration of equivalent 

notions of winning strategies for PDAs and recursive games as inceptions will be viewed 

as recursive.  
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Pushdown automata simulate all traditional stack operated machines by using pop 

(delete), push (add), nop (empty) operators on a finite alphabet stack. They contained

in the sense of every FA has an equivalent PDA, but at least one PDA does not have an 

equivalent FA, but more importantly are advantageous over  because they can 

additionally store information in a stack as they process symbols. FSMs recognize 

exactly the regular (rational)  languages – languages which are defined by regular 

expressions and are generated by regular grammars – whereas PDAs exactly recognize 

the context-free languages – languages with grammars that require less stringent 

requirements than regular grammars.  In the context of games, languages, which are sets 

of strings of symbols from an alphabet, define the recognizable strategies that can be 

implemented.  The winning strategy for a game is simply the language that is most 

recognizable, most efficiently.  We define in more detail pushdown automata later along 

with a timed version when tying those automata with time dilated recursive inception 

level games.  We investigate pushdown automata and systems which are simulated by 

recursive state machines (RSMs) since it has been shown that winning modular call 

strategies (guaranteed module call compatibility) are equivalent to winning strategies in 

recursive game graphs and hence to those in recursive games of which inceptions are 

timed versions thereof.  It has been shown that pushdown automata can be approximated 

using RSMs (Alur, Etessami, & Yannakakis, 2001). RSMs and their modular processes 

or recursive subprogram calls under certain circumstances are equated with successful 

strategies in infinite state (stochastic) recursive games (graphs) if computation is 

interpreted as decision-making in Alur, La Torre, & Madhusudam (2003;2006) and are 
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categorized in Fridman (2010).  This approach to tying automata and their recursive 

subprogram calls to favorable stratagem in stochastic recursive game graphs where 

computations are decision branches is the theme to be used to expand on inception games 

as very general emergent automaton.  Inception levels , 0,1,...lL l   , are to be equated 

with recursive subprogram calls.  In this light we consider emergent types of automaton 

and computing machines to equivalence to inception games.  The recent concept of timed 

pushdown automata (TPDA) from Abdulla, Atig, & Stenman (2012) can then be utilized 

in relating inception level time dilation and game strategies with pushdown automata 

modular subprograms.  These automaton models will then emulate generalized inception 

games using frameworks for general uncertainty and universal non-classical physical 

theories.  These equivalences will put into view the powerful computational and game 

metaphors of inceptions. We start with hypercomputational automaton of the Zeno type, 

proceeding to quantum-gravity machines using general uncertainty frameworks and then 

to evolutionary, von Neumann, and Gӧdel automata leading to generalized pushdown 

automata where the favorable game stratagem equivalence to recursive modular 

subprograms is used. 

Define a Zeno machine (ZTM) (accelerated Turing machine) in the following 

manner. A ZTM is a Turing machine with one input, output, and storage tape each. The 

n-th transition is computed in  
1

2
n

 unit time.  Theoretically, without being concise about 

defining and ascertaining a final state of an ZTM, infinite transitions (computations) or a 

supertask can be done within one unit of time. Potgieter (2006) suggests this represents a 
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problem with ZTMs satisfying the Strong Church-Turing Thesis (SCTT) with respect to a 

ZTM framework but not to regular TMs.  ZTMs serve as simplified models for 

hypercomputation and can therefore be theoretized about and applied to general 

hypercomputation Turing machines in general.  Burgin (1984) and Putnam (1965) 

developed inductive Turing machines (ITM) in which a TM computes stable outputs after 

a finite number of computations and never changes thereafter.  If a stable answer is found 

at the n-th transition, the ITM is said to be of order n.  Though infinite time 

hypercomputational machines have been theorized and categorized by Hamkins (2005), 

we will want to concentrate on finite time hypercomputation since inceptions 

strategically require achievement in finite time periods with respect to level-0 reality, 

notwithstanding infinite time computations are approached perceptively at higher 

inception levels with respect to computations at lower inception levels as l  , (i.e. 

generalized inception limbo-time is infinite time computation). 

Quantum-gravity, Hypercomputation, and Generalized Pushdown Automata for 

Inceptions 

 

  Time dilation computation is honored by near-c speed relativistic effects and 

hence, the movement of particles, fundamental to computation, whether classical, 

quantum, or quantum-relativistic (quantum gravity), follows appropriately in the various 

dream levels,
lL .  Digital physics adheres to the position that any perceived reality is in 

the limit, at the discrete spectrum of Planck-level existence.  Zizzi (2000, 2005a, 2005b) 

has proposed quantum gravity computation at the Planck level using digital loop quantum 
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gravity (LQG) spinfoam models.  ‘t Hooft (2012) proposes a (universal) physical cellular 

automata on 1+ 1 dimensions with Boolean processes acting on spacetime lattice sheets 

that map onto the operators of superstring field theory, hence a digital superstring QG 

based automata alternative to a LQG-based automata.  More accessible proposals of 

quantum digital computation come from the sub-models of quantum finite and pushdown 

automata which have become well researched abstract models that recognize regular and 

non-deterministic languages – of which general semantic problems may be solved (Cem, 

Say & Yakaryilmaz, 2011; Golovkins, 2001).   

Etesi & Nemeti (2002) establish models for hypercomputation in Malament-

Hogarth spacetimes where an observer may witness infinite amounts of computation in 

finite time because of relativistic effects in proximity to black-hole horizons.  Lloyd & 

Ng (2004) also consider machines based on black-hole relativistic horizon effects.  Hardy 

(2007) has conceptualized the notion of a quantum-gravity automata using his causal-

probabilistic framework for quantum-gravity referred to as causaloids.  Lloyd (2006), 

Abrams & Lloyd (1998), and Czachor (1998) posit how a plausible quantum computer 

can simulate quantum gravity but is not intrinsically run by quantum gravity rules. 

Instead, small non-linear terms are added to the QM linear representations of state 

evolution, leading to capabilities to solve NP-complete problems efficiently, (i.e., in P-

time).  Recently, Kempf (2013) proposed the idea of utilizing EPR-type measurements 

via spectral geometric measurements on spatially separated entangled spin qubits in 

quantum vacuum to encode and simulate spacetime curvature in quantum computers and 

hence simulated a full QG computer, (i.e., the spectral geometric properties of spacetime 
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curvature are akin to “hearing’ what the shape of the spacetime curvature is).  This 

suggests using more general entangled qubits, labeled as e-bits here, to emulate QG 

particles as transporters of information in a QG computer.  In order to build a quantum 

gravity machine however, a more concrete theory of QG must emerge based on 

experimental agreement, successful prognostication of physical results such as those from 

particle discovery, and elegance of explanation as in theories of everything with clearer 

physical manifestations to computational theories.  Why approach universal computation 

through the lens of emergent physical theories such as QG?  While some natural physical 

processes may not be classically computable (e.g., Fouché (2000) showed that Brownian 

motion with respect to Wiener measure at rational points cannot be approximately 

computed by a classical TM in time almost surely); changing the definition of 

computability (via the various versions of the Church-Turing-Alonzo Thesis - CTAT) to 

encase non-classical phenomena is needed (Licata, 2012).  New definitions of 

computability such as those emanating naturally from QG or evolutionary approaches 

must be formed and well-defined before positing that physical and computation processes 

are functionally isomorphic – the stronger Church-Turing-Deutsch Thesis (CTDT) 

(Deutsch, 1985).  In this regard, QG theories are approached using either emergent or 

fundamental spacetime geometries and relativity and is spacetime geometry, if it exists, 

dynamical or fixed.  Superstring theory is a quantum field theoretic approach that 

assumes an emergence of spacetime gravity after initially being fixed.  LQG, spinfoams, 

etc. are background independent versions of QG that have emergent dynamical 

geometries (Markopoulou, 2009).  Here we consider machines that handle generalized 
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uncertainty due to the Zadeh GTU formalism and are quantum gravity-based automata 

that are capable of naturally computing quantum-relativistic events with integrated 

SPACETIME resources.  

Inceptions, as introduced, are social phenomena.  For those emergent casual 

physical models that are being considered here as general computational structures for 

inception games, this begs the relevance question, “where and how do inceptions take 

place outside of the social phenomena arena?”  However, inceptions can theoretically 

form at the quantum (and near-Planck levels) and cosmic levels through general 

subatomic-quark particle and galactic clusters-dark energy-dark matter (gravitational 

lensing) interactions respectively. 

Causaloids , are systems of extended conditional probabilities that endeavor to 

connect well-defined probabilities of events interpreted by programs, F to compute in 

fuzzy spacetime regions, R – regions in which local (fuzzy) spacetime causality is 

bounded – connecting these regions back together causally via compression operators on 

three successive complexity levels of composition.  Hardy refers to fuzzy spacetime 

regions as those in which space-like or time-like qualities are unknown apriori because of 

indefinite causal and temporal structures. We may generalize Hardy’s notion of regions 

by imposing a general stochasticity to its space-like or time-like features.  A Zadeh 

uncertainty structure, G may be imposed on region R and be denoted as 
GR .  See 

Appendix B for more details on Zadeh’s general theory of uncertainty (GTU) and its 
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tuple constraint form G.  Causation is therefore developed in GTU quantum-gravity as 

general (time) indefinite causal structures.   

Formally, causaloid quantum gravity computers (CQGC) are given by pairs,

 ,Q S  where is a causaloid system and S is a set of gates (state evolvers).  See 

Figure 3 in Appendix C for a rendition of a lattice CQGC.  Along each edge e, 

computational particles, which could be qubits or e-bits, but may be further generalized 

to be their GTU counterparts that we label as g-bits in Sepulveda (2011), travel and 

encounter at node l, decision evolvers which is a decision branching process to divert the 

particle to a subset of possible gates, 
lS S .  Note that in a CQGC, the gates

lS  may be 

partially non-local to node l (in the classical topology of the lattice).  Q has to be a non-

time step computer since it is dictated by an indefinite temporal structure. In a Hardy 

CQGC, probes labeled by an index
pn N are omnipresent in QG spacetime.  In a Loop 

QG formalism of QG, these probes would reside at spinfoam network nodes, the 

elemental structures of LQG (Rovelli, 2008).  In a superstring (M-theory) version of QG, 

the probes would be represented as primitive string configurations.  Hardy probes,

,  n pp n N , in the vernacular, can be Planck level mass ( 3 105 34.224 10pl x m ) 

computational machines with systematic inputs 
nx  (spacetime reference point), program 

structure
nF   and systematic output 

na that may be the detection of physical 

manifestations of qudits (multi-level qubits) such as groups of photons. The inputs are 

governed by the execution of the program,
nF on the input

nx and on a spacetime physical 
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rendition of history data, 
nr  (time-independent) received by the probe, so that

 ,
nn p n ns F x r . Data is thus collected as probe information tuples (cards) 

 , ,s , ,n n n n n nq x a F r .  Let   
, , ,

, , , ,
x a F r

V q x a s F r  denote the set of all possible cards.  

A subcollection of such,  ,
,

,
j

j

N I n p
n N j I

V q N N
 

  where I denotes an index of repeated 

runs of probe calculations and N is a subset of probes from Np, will represent the stack of 

cards developed from the experiment  ,N I of runs on a subset of the probe space Np.  

Further, let   
( , , , )

, , , , |
x a s F r

R q x a s F r x , denote the subset of cards with input x, 

  
( ,x, , )

, , , , |s a F r
Y q x a s F r s , the set of cards with output s, and 

  
( , , , )

, , , , |
F x a s r

V q x a s F r F , the subset of cards consistent with the program F.  Finally, 

one defines a composite spacetime region, 
O x

x

R R


 .  The outcome set of 
xR is depicted 

as  
xR s xs

Y Y R and the program in
xR is depicted as  

xR F xF
F V R   In order to 

stochastically connect one quantum spacetime region to another, conditional probabilities 

(or GTU constraint operators, Gp as proxies or extensions of classical probability) of the 

form,  

 ( | , ),
x x z zR R R RpG Y F Y F   (4.10) 

must be well-defined and calculable.  The uncertainty operator in (4.10) will be well 

defined if the regions are casually connected.  To make this plausible, the uncertainty 

values (and operators),  |
x xp R RG Y F must be well defined.  To this end, Hardy imposes 
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an assumption on the outputs and programs in the complement (in V) of a very large 

region R V , 
 

 

\
0

card V R

card R
.  Conditions C, are put on 

\V RF and
\V RY such that the 

values  |p R RG Y F are well defined. In a quantum gravity computer, the large region R is 

where the computations function.  Otherwise, computations are nonfunctional or 

meaningless. 

Denote by  ,
x xx R RY F  the measurement pair depicting both the measured 

output and the measuring apparatus program on spacetime regions. The GTU operators of 

the form, 

  \ \|
x x x x xR R R RG G Y Y F F     (4.11) 

are then considered as the components of states, expressed as minimal expanses (fiducial 

sets), 
1 ,  

  
1 1 1

.

.

,  

.

.

x lG R G l

 
 
 
  
 
 
 
 

  (4.12) 

of the region
xR where linear relationships between the probabilities (4.11) and the states 

are posited via the same physical logic utilized for quantum linear representations, 

    
x x x xG G R G R    (4.13) 
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where  
x xG R

are scalars dependent on the region 
xR . The matrices, 

1  are then 

considered compressions of these states. Causaloids next consider two more levels of 

compression via state representations in higher order matrices. See Appendix C for 

details on the compression series that is manifested by a causaloid system.  In the case of 

a spacetime lattice with pairwise interacting particles,  ,
i jx xl l , regions 

xR , and adjacent 

particle pairs  ,
i jx xk k intercepting at nodes x.  Causaloid system are expressible as, 

   '

'
adjacent , ', , ,  

xx x i xi j i

x xi xi

k kl l

l l x xx

       
 

 subject to
'

'

xi xi

xi xi

k k

l l  calculation methods (clumping) 

and to how the nodes in the spacetime lattice that place hold theoretical qubit or 

generalized particles, dynamically act or move – the so-called causaloid diagram. 

Causaloid diagrams are akin to Feynman diagrams for lattice node elements in this 

spacetime regionally linked causal framework. Appendix C reviews this calculus for 

building causaloids under a conventional Kolmogorovian probability framework, 

whereas here we consider more general GTU operators, (i.e., operators which may be 

general expressions of combinations of fuzziness, uncertainty such as rough set 

approximations, possibilities, internal quantum-gravity probability, paraconsistent logics, 

etc.). 

 Consider causaloid computer classes as follows: a class of causaloid computers is 

the set   , |mC S S m    for some integer m, where S is a subset of gates, S S , S

is the universe of spacetime lattice gates, and is a causaloid system.  Hardy considered 

m to be small on the order of 10 for realizable computer operation spaces.  However, here 
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we do not put a restriction on m and indeed consider infinite dimensional causaloids as 

we do inception levels. A causaloid computer instance  , U

mS  in mC
is universal in mC

if  , U

mS can simulate any computer instance in mC
.  Hardy established that causaloids 

exist that simulate both classical and quantum computers via causal definite structures 

and the probability structures that connect them.  In a QG causaloid computer no such 

definite causal structure exist nor may classical probability structures connect them, even 

with quantum probabilistic rules since relativistic effects are not accounted for in the 

connection.  QG causaloids are then built based on QG theories such as LQG, Superstring 

theories, their respective derivatives and flavors or so-called pre-geometric approaches 

(Caravelli, 2012). For example, in LQG spinfoams are used to connect 3+1D spacetime 

regions such that quantum and relativistic effects are honored in a background 

independent manner.  In an LQG version of a causaloid, the probabilistic structures are 

replaced by spinfoam paths.  In our GTU version of causaloids, probabilities are replaced 

by generalized constraints G, via Zadeh’s definition.  GTU causaloids with QG spacetime 

regions would then generalize physical QG theory-based causaloids.  We denote a GTU 

causaloid by
G . The class of computers, G

mC
 , m an integer, represents regional QG 

causaloid computers for small m.  Universal causaloid computers,  , U

G mS  in G

mC
  

would define an equivalence class in the space of all causaloid computers  , S 

based on Turing equivalence.  However, even universal causaloid computers may not be 

able to honor the CTDT.  Here, we simply theorize GTU causaloid computers with input, 
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output, programs, and with storage requirements (tape) fulfilled by the collective state of 

the contained traveling particles (g-bits), a GTU causaloid automata.  We now investigate 

placing internal clocks at operational instances of nodes in order to simulate timed 

pushdown automata. 

 Time pushdown automata (TPDA) are PDAs in which clocks (infinitely many 

possibly) are placed at stack nodes and the value of those times constrain the actions of 

the automata (Abdulla, Atig, & Stenman, 2012). Stack ages are also compiled and hence 

the SPACE requirements of TPDAs are larger than those of PDAs by an order of the 

number of internal clocks placed.  To this end, recall that a pushdown automata is a tuple 

 0, , ,S s A  consisting of states S, an initial state
0s , A is a stack alphabet of possible 

acceptable symbols, and is a set of transition rules. Pushdown operators include adding 

or removing information to the stack – push and pulls respectively. Transition rules are of 

the form  , ,s op t  where s is the source state, t is the target state and op is the operation, 

push(a), pop(a) or nop(a) where a A is an arbitrary symbol and nop(a) is the empty 

operation of not modifying the stack while changing the state a. Reachability of an 

automata is the capability of deciding whether it can reach a state s.   

TPDAs are PDA tuples with clocks,  0, , , ,S s A C  where C is the set of clocks.  

In TPDAs, two additional operators are added based on clocks, ?Ix T , (i.e., is the value 

of clock x in the time interval TI?) and 
Ix T , (i.e., deterministically resets the value of 

clock x to some value in the time interval TI).  Stack symbol ages are stored as well as the 

clock values, x.  For purposes of studying reachability in TPDAs, the concept of regions 
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(from timed automata) are modified to fit the role of region equivalence in TPDAs. 

Regions in a TPDA are subsets of the automata where clock valuations (times) are similar 

modulo some arithmetic rule.  Clock values x are separated into their integral part INT(x), 

and fractional part, FRAC(x), respectively.  Two configurations are equivalent if for the 

configuration clock valuations, x (i) INT(x) are the same within a threshold constant cmax, 

(ii) ( ) 0FRAC x   or ( ) 0FRAC x   in both, and (iii) the order of the values ( )FRAC x are 

identical in both.  Time sequences are then calculated by rotating values, (i) if 

( ) 0FRAC x   for some items then push() is instigated, or (ii) if ( ) 0FRAC x   for all 

items then the items with largest ( )FRAC x  values are incremented, (i.e., 

( ) ( )x INT x x   ). Next, two types of items are defined, plain items and shadow 

items. Plain items represent clock values or stack symbol ages. Plain items consist of the 

set  X A �  where 0�  except when pop() is executed. Shadow items record the 

values of corresponding plain items in the region below and consist of the symbols

 *, *, *x a � and are recorded to remember the amount of time that elapses while the plain 

items they represent are not the topmost stack items. The timed transactions, 

? , , ( , )I I Ix T x T pop a T   are also simulated by PDAs operations. See Abdulla, Atig, & 

Stenmen (2012) for more details. 

 Timed pushdown GTU causaloid automata (TPDGTUAs) can be represented 

using the tuples of TPDAs, with a GTU causaloid,
G ,  0, , , , ,GS s A C G and utilizing 

the stochastic transition rules of GTU causaloids to execute the modified stack operations 
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    ( , ), ( , ), ( , ), , ,?
G I I IG G G I I GG G

pop a T push a T nop a T x T x T    �  appropriately. For 

example, ( , )G Ipop a T is executed according to the GTU rules (4.13) and the time interval 

TI is replaced by a corresponding spacetime region RI.  C is a set of clocks positioned at 

the causaloid spacetime lattice nodes and is replaced by spacetime measurement probes 

indexed by n as discussed earlier leading to the definition of causaloids. These changes 

are necessary because the concept of time in a TPDGTUA is merged into spacetime since 

general indefinite causal structures are involved and hence timed sequences are non-

sequitar.  Hence, the timed operations are replaced by spacetime operations utilizing the 

GTU causaloid structure making the possibility of inter-regional computation well-

defined. 

 We return to the discussion of recursive state machines (RSMs) and their role in 

pushdown systems that contain submodular automata.  In Alur, La Torre, & Madhusudan 

(2003) modular strategies for infinite recursive games modeled by recursive graphs are 

equated with RSMs and recursive procedure calls that model the control of sequential 

processing.  Favorable or winning strategies for recursive games are equivalent to a 

regular   specification (infinite strings formed from A as a regular language) over the 

observables and is modular in the sense that resolution of choices within a module does 

not depend on the context in which the module is invoked, but only on the history within 

the current call. These problems of modular reachability (games) were shown to be 

EXPTIME-complete in general and Np-complete for fixed sized modules.  Alternating 

temporal logic (ATL) is utilized to show that the delivery of a message in a module A is 
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independent of the behavior of another module B in a recursion using winning recursive 

game strategies governed by the regular   specification.   

That winning modular strategies are computable for RSMs and recursive game 

graphs implies that memoryless strategies implemented in each module lead to 

compatible recursive calls.  In the context of game representations, recursive game graphs 

can be mapped onto their equivalent class of recursive games in normal form, albeit with 

some loss of information not affecting strategy outcomes.  However, in light of how 

inceptions can be viewed as recursive games, winning strategies can be had without 

retaining or taking full advantage of the histories of other inception levels or modular 

calls.  In inception, the notion of subcoalitions and n-agent strategies complicates the run 

of the game where various types of uncertainty of information reigns supreme.  Risk 

spectra become flattened out because of these uncertainties.  By the simplification of 

guaranteeing the compatibility of each inception level transfer or module call by the use 

of the equivalent regular   specification translation in inception game information, 

winning or achieving inception (or avoiding inception for the opposing inceptee group) 

can be deterministically arrived at.  It remains to show what module call (inception level 

transfer) compatibility and regularity  () mean in the context of multi-agent coalition 

inception games. 

Pushdown automata can be further generalized based on the rules of transition and 

the actual apparatus physics.  In this way the concept of quantum pushdown automata 

(QPDA), along with quantum finite automata (QFA) were introduced in  Moore & 
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Crutchfield (1997) and corrected in Golovkins (2001). We review the definition of a 

QPDA, 

 

Def. A quantum pushdown automaton (QPDA), given by the tuple, 

 0 0, , , , , ,rA Q T q Q Q    where Q is a finite set of states,   is a finite input alphabet, T 

is a stack alphabet, 
0 0q Q  an initial state, 

aQ and
rQ are mutually exclusive accepting 

and rejecting states respectively in Q, and    *: , 0,1Q Q        , where 

 #,$   is an input tape alphabet of A and  #,$ are end-markers not in  . 

 0T Z  is the working stack alphabet of A and 
0Z T is the stack base symbol, 

 ,   are direction operators of the input tape head. 

 

Well-formedness conditions, including separabilities, are put on these components in 

order to stay faithful to the conditions of quantum mechanics. See Golovkins (2001) for 

these details.  We now define the configuration for the quantum pushdown automata, 

 

Def. A configuration of a quantum pushdown automaton is a pair ,i j k lc v q v   where 

the automaton is in state 
jq Q ,  *#,$,i kv v   is a finite word on the input tape,and

*

0l Z T  is a finite word on the stack tape. The input tape head is above the first symbol 
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of
kv and the stack head is above the last symbol of 

l . We denote the set of all 

configurations of a pushdown automaton by  C c . 

 

In the 
2 -normedl  Hilbert space generated by C,  2AH l C , any global state of A can be 

expressed in the basis ca  as: c

c C

c 


  where the sum of the squared amplitudes 

are unity, 
2

1,c c

c C

 


  .  Linear operators 
AU  on the states of A are expressed as 

 A c A

c C

U U c 


   (4.14) 

For a general configuration ,i j k lc v q v  , 

    
    *, , ,

, , , , , , , ,A j l

q d Q

U q q d f c d q


     
    

    (4.15) 

where  
,  if 

, , ,
,  if 

i k

i j k l

i k

v q v d
f v q v d q

v qv d


 



 
 


 . The separability conditions imposed 

by Golovkins (2001) implies the well-formedness of QPDA.  Language recognition for 

QPDAs are then defined in the following manner: 

 

For a QPDA  0 0, , , , , ,rA Q T q Q Q   , define three configuration subsets,  

 , |a i k l aC v qv C q Q   ,  , |r i k l rQ v qv C q Q   , and  \n a rC C C C . Let

, ,a r nE E E be the subspaces of
AH spanned by , ,a r nC C C  respectively. Denote by o, the 

observable that corresponds to the orthogonal decomposition
A a r nH E E E   . 
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Measurement of o will then either be “accept”, “reject”, or “non-halting”. Now consider a 

word *x .  This is input into A as the string # $x .  Assume that the initial 

configuration in A is then 0 0# $,q x Z .  In a first step the operator 
AU is applied to the 

current global state of A, leading to a second step of the resultant superposition observed 

using the observable o defined above.  Assume that the global state of A before the 

observation o is c

c C

c


 . The probability that the superposition is projected into 
iE is 

therefore 
2

i

c

c C




 for  , ,i a r n . The computation continues until the resultant 

observation is “accept” or “reject”.  Using these mechanisms of language recognition, a 

QPDA is shown to recognize every regular (rational) language. Other irregular languages 

such as   *

3 , , | a b cL a b c        are recognizable by a QPDA with 

probability
2

3
 and   *

5 , ,   | a b a cL a b c xor        with probability
4

7

respectfully, where
i

w denotes the number of occurrences of the symbol i in the word .   

 Cellular automata can be extended to have pushdown automata capabilities by 

forming pushdown cellular automata (PDCA) where each cell is now a PDA (Kutrib, 

1999).  Each PDA cell with state at time t, t

xc , receives a collective input (string) from its 

designated neighborhood group of cells,    
t

t s

s N
g n n


 with content   1t t

x xc f g c  .  

It then processes the input utilizing its stack (transition) operations
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  1 1 1 1c , ,t t t t

x i x x i xop c op     where 1t

i xop   is the i-th executed operation and  1 1t t

x i xc op  is 

the resultant output state. Let 

 
     

    

1 1 1 1 1 1 1

1 1 2 2
1

1 1 1 1 1 1 1

1 1

c , , , ,

c , , , ,...

t t t t t t t

x x x x x x x
t

f x
t t t t t t t

x f x x f x f x x f x

op c op op c op
c

op c op op c op

      



      

 

 
 
 
 
 

  (4.16) 

denote the final output at the time t+1 increment for cell cx where 
1t

f xop 
 designates the 

final operation executed for that cell at that time increment.  Since these calculations are 

in general not in lock-step, synchronization issues appear.  Using the last-out 

parallelization synchronization policy, the outputs,
1t

f xop 
where the cell cx is in the 

neighborhood group,    
t

t s

s N
g n n


 surrounding another cell, cy, contribute accordingly 

to that cell’s initial input state at the next time increment   2 1

1

t t

y xc f g c  . PDCAs are 

special, albeit general lattice cases of automata arrays which are important metamodels 

for parallel computation. CAs which are associated with groups whose alphabets are 

affine algebraic sets, generalize conventional lattice-based CAs. Further to this, discrete 

geometric-topological objects described by metric topologies or algebraic-topological 

objects with very general algebraic structures on semi-lattices (affine, relational, Lie, 

Heyting, Clifford, or division algebras) further abstract the shape and extend of cellular 

automata working in tandem according to some regime of interaction rules and 

neighborhood types.  Ceccherini-Silberstein & Coornaert (2010, 2011) develop the case 

for affine algebraic cellular automata.   
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Von Neumann machines/automata (VNA) are versions of automata arrays that 

self-replicate to form macro-automata from micro-automata (cells) within the scale of the 

automata array (Kutrib, 2001).  VNAs can therefore be further generalized by considering 

more abstract shape distributions of micro-automata in the macro-automata through more 

exotic topological and algebraic structures.  For example, a topological lattice may be 

non-primitive in the sense that the lattice curves around itself and has more than one 

lattice point per cell at a spatial location.  We will discuss in more detail von Neumann 

automata later in this section.  CAs may be opportunistic models for inception games 

because inception levels can be viewed as evolvers much like the iterative mappings in 

CAs and multi-agent coalition groups can be delineated amongst cell populations.  The 

evolution of CAs may define the dynamic of inception coalition teams as inceptions are 

attempted navigating through different inception levels.  To this potential, evolutionary 

dynamics of simple Boolean CAs has been heavily studied since the initial conception of 

von Neumann (1951,1966) up to the recent attempt to classify CAs into four classes and 

256 prototypes by Wolfram (1983, 2002), with a further analytic definition of a universal 

map for Boolean CA generation in Garcia-Morales (2012).  The evolutionary dynamics 

of more general algebraic-topological CAs has not been systematically approached. 

Sepulveda (2011) stipulates how a generalized uncertainty automata for 

information processing can be developed using a recurring thematic tool in this study; 

Zadeh’s notion of a general theory of uncertainty (GTU) that subsumes and categorizes 

through logical constraint and score functions, uncertainty models including: classical 

Kolmogorov and Bayesian probabilities, quantum-probability, fuzzy and rough set 
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probabilistic and evidential theories, possibility theory, Dempster-Shafer type theories of 

evidence, and other anthropomorphic notions of risk and uncertainty (Zadeh, 2006).  

These automaton are referred to as GTU Turing machines or automata (GTUTAs).  

Causaloid-based quantum gravity uncertainty from Hardy (2005) is framed into this 

patternization as well.  See Appendix B for a detailed discussion on the GTU.   

Finally, the author combines a notion of morphogenic computation utilizing 

generalized objects as computational units replacing the familiar Boolean algebra with 

mathematical fields using its topoi (generalized sets from category theory) equivalent as 

the standard unit of computation – morphogenic Turing machines (MORPHTMs).  In a 

further attempt to generalize automata and information fields, the author posits about the 

development of evolutionary automata in the framework of MORPHTMs.  MORPHTMs 

are given evolutionary recursive operations of variation (crossover) , and selection  to 

produce evolutionary MORPHTMs or EMORPHTMs.   

As a natural motivation for approaching decision making from an evolutionary 

point of view, Cooper (2003) posited that decision theory formed from decision tree 

analysis is an extension of a more general evolutionary tree analysis whose decision 

branch plans are referred to as life-history strategies.  Cooper seats evolutionary theory as 

the root generator of all logics, including decision theoretic logics, inductive and 

deductive logics, and mathematics.  Brenner (2008) goes further and grounds many 

functional logics such as quantum logic as special cases of an overarching non-

propositional logic based in relational ontological physical reality named the logic in 

reality (LIR).  Apart from the major work developed from evolutionary game dynamics 
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utilizing stochastic differential forms as discussed in Appendix B, one can approach 

game dynamics using evolutionary processes from equivalent automaton models.  In this 

spirit, recently Burgin (2013) defined generic evolutionary automata as sequences of TMs 

that act as one-input two-output progeny machines.  Burgin refers to such automata as 

general evolutionary K-machines (K-GEMs), where K is a class of automata with one 

input and two outputs. 

 

Def. A K-GEM is a sequence  t t T
E A


 of automata from K that operates on population 

generations, i i I
X


which are coded as words in the alphabet of K. The objective of the 

K-GEM is to conceive of a population Z that satisfies: 

1. 
tA  (level automaton) of E represents a one-level evolutionary algorithm operating 

on the input generation
iX , applying recursive variation and selection operators, 

 and    respectively. 

2. 
0X is the initial generation and is operated on by 

1A consequently generating 

subsequent generations, 
1X (transfer output) that inputs to 

2A . 

3. 
tA  receives input from either 

1tA 
or 

1tA 
, then applies the operators  and   to 

iX

producing 
1iX 
 as its transfer output and when necessary (non-terminating node) 

sends it to either 
1tA 
 or

1tA 
. 

4. The optimal search condition to select a population agent
*ix from 

iX  is 

 * arg max
i i

i i
x X

x f x


 for some fitness performance measure f (Burgin, 2013). 
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Burgin signifies that a K-GEM is inductive of order n if each of its members is at 

most inductive of order n. Burgin further defines universal evolutionary automata (U) in 

much the same way that universal TMs are via codification. 

 

Def. Let H be a class of evolutionary automata. An evolutionary 

automaton/algorithm/machine U is universal for H if given a coding  c A of 

automaton/algorithm A from H and input data x, U obtains the same result as A for input x 

or gives no result when A gives no result. An evolutionary automaton/algorithm/machine 

U is universal in H if it is universal for H andU H (Burgin, 2013). 

 

In a further abstraction to evolutionary processes, Sepulveda (2011) defines a 

generalized evolutionary process by injecting generalized uncertainty into the selection of 

a class of fitness functions at each stage t given by a Zadeh GTU structure, 

 , , ,g X r R ts  where X is a constraint variable, R is a constraining relation, r is an 

index representing the modality of constraint semantics (uncertainty model such as 

possibilistic, intuitionistic, probabilistic, quantum-probabilistic, fuzzy, rough set 

theoretic, etc.), and ts is a test score functional associated with the GTU constraint 

(Zadeh, 2006). We define
tg to be the GUT operator that selects the class of functions FE 

to be considered for a optima at stage t from a universe of fitness function classes, for 

the evolutionary automata E.   
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Denote a GTU universal evolutionary Turing machine (GUETM) by 

 , , tE g  where E is a universal evolutionary Turing machine, a superclass of 

classes of fitness functions, and gt a GTU (constraint) object.  EMORPHTMs or 

morphogenetic evolutionary automata consider replacing word (utilizing bit 

representations) construction with field construction.  From this perspective an 

EMORPHTM, G, considers classes of fields such as those from quantum-gravity field 

theories (loop quantum gravity spin foam general networks and string fields from 

superstring theory) and dynamicism within them defined by uncertainty operators of 

quantum operators captured by an appropriate GTU object. The relativistic nature of a 

quantum-gravity can be simulated by the recursive nature of time dilation in each 

inception level if inception games can be structured as kinds of EMORPHTMs. We a will 

later pursue the nature of the connection between general automata and general recursive 

games since it will be our premise that inceptions are general recursive games.  This will 

tie inceptions into the structure of generalized dynamic automata that can be viewed as 

equivalent to recursive  games in terms of logical information control flow.  Next, 

however, we consider even more general adaptive evolutionary machines. 

If  t t T
E A


  is an evolutionary automata, its components, At are apriori defined 

then actionized by the dynamics of the optimization of the fitness function f.  Indeed, the 

components of E may be dynamically born instead of being given a prior existence. 

Consider automata that are capable of two progenic operations, self-reproduction and 

self-improvement.  von Neumann (1966) famously developed a class of self-reproductive 
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automata that defines most research in self-building machines. A more contemporary 

definition of von Neumann machines follows. 

  

Def. Kinematic self-replicating von Neumann automata/machines are quadruplets, 

 , , ,SR A B C , where  is a set of blueprints (code instructions) that completely 

describe how to construct the triplet of machines, (A,B,C), A is a constructor 

automata/machine capable of building another copy of SR given , B is a blueprint copier 

automata/machine, and C is a controller automata/machine that synchronizes the control 

of alternating actions of A and B (Freitas & Merkle, 2005). 

 

 Alur, La Torre, & Madhusudam (2003; 2006) and Walukiewicz (2001) showed a 

computational equivalence between pushdown automata as recursive state machines 

(RSMs) and two-agent recursive games (graphs). Moreover, effective strategies in two-

agent recursive game were equated with modular control flow in recursive procedure 

calls, (i.e., the component recursion games  in two-agent recursion games are independent 

local memory modular recursive procedure calls). RSMs consist of component machines 

called modules that each have a set of nodes representing internal states and a system box 

that contains entry and exit nodes with edges connecting nodes and boxes.  Edges 

entering a box are invocations of the module represented by that box, while edges leaving 

a box are the returned values of that module. In a RSM two-agent game, the set of nodes 

is divided into two partitions representing each agent.  The agent strategies are then the 
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transition rules for invocation from their respective nodes, (i.e., the edges chosen to 

proceed from their nodes).  We define recursive game graphs as in Alur, La Torre, & 

Madhusudam (2003;2006) in a finite automaton context and as a way to connect to the 

concept of more general extensive form recursive games of which inceptions will further 

generalize. 

 

Def. A (finite) recursive game graph G, is a series of modular game graphs, 

 
1,...,i i n

G G


  where   1,...,M
, , , , , ,k

i i i i i i i ik
G N B V Y En Ex 


  are modular flat game 

graphs, and for each modular game, 
iN  are the nodes, 

iEn N  are the entry nodes, 

i iEx N  are the exit nodes, 
iB  are the boxes, k

iV are the mutually exclusive set of places 

(nodes and boxes) occupiable in 
iG  by agent k,   : 1,...,i iY B n  are assignments of 

boxes to a game module, and if     Calls , | , ,i i j ib e b B e En j Y b     is the set of 

calls in 
iG and     Retns , | , ,i i j ib x b B x Ex j Y b     is the set of returns in

iG , then

Calls
: Retns 2 i iN

i i iN   is a transition function that governs the possible movements 

from nodes and returns from one game to nodes and calls of another game.  Conditions 

are then put on G so that an automaton program can be emulated.  A play in G is a path in 

the game graph. The global state of a recursive game graph  
1,...,i i n

G G


  is a pair  ,u  

where  
1,...,i i r

b B


   is a sequence of boxes (stack of recursive calls) and u N   is a 

node (current control point).  Denote 
GQ  to be the space of well-formed states for G. 



 

111 

 

 

Since the set of places (nodes and boxes) can be partitioned by those belonging to K 

coalitions, a global state  ,u  can be labeled as a K-state if either u is not an exit node 

and is a K-node (a node populated by coalition K agents only) or if  ,rb u  is a K-return (a 

return node populated by coalition K agents only). 
K GQ Q  will denote the set of K-

states. A global game graph corresponding to G is given as the tuple

  1,...,
, ,G G k k K

GL Q Q 


  where there are K coalitions and   is a global transition 

function : 2B

GN Q   under certain move, call and return conditions  Reachability to 

certain nodes called target nodes from a starting node is considered a winning strategy.   

In this respect, nodes in a winning strategy are connected by eventual reachability.  Using 

this definition, a recursive reachability game is a tuple   11,...,
, ,i i n

G G e T


 where
1e  is 

the entry node of 
1G  and

1T Ex  is the target set of target nodes. A winning global 

strategy in a recursive game is a winning strategy in the corresponding global recursive 

game.  Finally, it was shown that recursive games as defined here are game graph 

isomorphic-equivalent to pushdown automaton and that by considering modular 

strategies defined on global memoryless, but fully local memory game modules instead 

of a global strategy, that winning modular strategies exist when those strategies are 

hierarchical in structure. Hierarchical strategies in a reachability game are those strategies 

(one per game) that make no recursive calls. Formally, a hierarchical strategy f on 

 1, ,G e T is one in which no play following the rules of f (according to f) and starting 
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from 
1e  reaches a state of the form   1,...,

,i i i
s b u


  where 

lu N and j lb B  for some

 1,..., nl  and  1,...,j i .  Two computational complexity results were also shown for 

recursive reachability games of this sort. First, the problem of checking whether a 

coalition (or agent) wins a game (has a winning strategy) is Np.  Second, the recursive 

game reachability problem is Np-complete.  If the modular strategies are not hierarchical, 

the problem of reachability is undecidable.  

If an inception game can be expressed as a recursive reachability game, the target 

set may be given by those nodes that express an inception state (i.e., the inception team 

has reached guru-consciousness or social power status as defined before).  Nonetheless, 

inception games are highly non-hierarchical in general since inception-hoping is bi-

directional. 

In inception games, two coalitions are presented by the inception and inceptee 

teams and transact as two-agent games when the coalitions are stably cohesive.  

Previously, in our introduction of inception games, definitions were given for a strongly 

social stability.  Recall the cumulative consciousness aware probability functions, 

 
 \ 1,2.,,, i

i lj

l S i j m

q p k
 

    assigned to an agent i in an inception.  The individual 

consciousness aware probabilities,  ljp k  may be replaced with well defined GTU 

constraint functions,  ljG k  assigned by a GTU constraint variable  ljg k   and test score 

function ljkt  for each triplet  , ,l j k .  This GTU can represent general uncertainty models 

and hence generalizes the representation of the inception payoffs and ensuing optimal 
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strategy formation when defining Nash equilibrium and evolutionarily stable strategies.  

The strongly social stability of the inception game is predicated by these GTU 

constraints.   

Recursion in Inceptions 

Inceptions may also be viewed as psycho-social recursive games. The recursion 

structure occurs at each inception level decision point where the coalition teams battle for 

(non)entry into level i inception with a probability  , ci I I
p a a given that the team-

collective actions  , cI I
a a are executed by the two teams respectively. Here 

    and c c c

i i

I I I Ii I i I
a a a a

 
  are vectors of actions of each team member in the inception 

and inceptee teams respectively.  Recall that a classical recursive game, 

  , , , , ,i i L
H A S p p

   consist of  (1) two agents (teams), (2) a finite set of n games, 

 
 1,2,...,i i n

 , (3) an action space, A (not necessarily finite), (4) a finite state space, S , (5) 

transitional probabilities,  ' | ,p z z a of going from state z to z’ given the two-agent action 

vector a A , (6) an absorbing game probability of  p a
, given action vector a A and 

(7) a vector of generalized payoffs  
s

i i I
H H


 where  1 2

1

, ,
n

kj

k k k k k j

j

H s s p e q


    ,
ke  

is the payoff  if the k strategy  1 2,k ks s of the two teams is used, and the probability 

conditions hold,
1

, 0,  1
n

kj kj

k k

j

p q p q


   .  For each game,
i , either a terminal state is 
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reached or entry into a next game, 
k is executed (Everett, 1957).  In inceptions, an 

inception level i is equated with a game 
i in the whole inception recursive game, 

  , , , , ,i i L
H A S p p

   with the inception and inceptee teams acting as the respective 

agents. Actions in inceptions are the allowable operations performable by each team such 

as deception, persuasion, brain-washing (thought insertion), termination, coercion, self-

interest, team cohesion, and multi-leveled covertness (generalized double, triple, …n-

switching agents). The states of the inception are the collective state descriptions of each 

team’s status within the game environment, (i.e., inception (not) achieved, levels of 

partial inception, inception reversal, team termination, game termination). The state 

transitional probabilities and inception entry probabilities are self explanatory and can, in 

instance of uncertainty categories, be iteratively conditioned on updated Bayesian priors, 

(i.e., subjective Bayesian probabilities based on inception evolution and histories). 

With this analogue between inceptions and recursive games, one must note that 

inceptions are more general than recursive games in the following manner. Inceptions 

may be iterative in the sense that inception teams may exit inception levels, ascending 

and descending into and out of other inception levels during epochs of zigzag inter-

inception level activity. Successful inceptions are ultimately described by thought 

inception of one team at the hands of the other and of the successful ascension to level-0 

reality of both team head operatives.  In recursive games, once an exit is made from an 

intermediate game, two options are possible: (i) an exit from the global game or (ii) 

entrance into the next level game.  Inceptions can instead, proceed: (i) to exit (ascensions 
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up to level-0), (ii) to the next descension level game (inception), or (iii) to an 

intermediate level game (inception) through a series of inception transitions.  Coalition 

(inception/inceptee) teams can be split into separate inception levels, working in time 

synchronization via the time rules discussed earlier, (i.e., agents in a coalition may reside 

in different levels during a stage or game status).  These recursive games are labeled as 

multi-level, multi-stage coalition recursive games.  The state of an inception game is 

dependent on a coalition definition of agent game states in possibly different game 

inception levels.  Each inception game level must then retain its state with respect to all 

agents from both coalitions.  When an agent 
Ki  from coalition team K, re-enters a game 

L  from a lower level game L j (possibly via repeated or chained ascensions), the game 

state of 
L  has changed based on the other agent’s potential behaviors (

is  ) between the 

time of exit and the re-entry of that agent (with possibly more of an informed strategy 

space) into 
L . 
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Figure 6 - Inception as generalized recursive game 

 

In our generalized version of inception, levels can ascend past level 0 reality to 

hyper-reality or enlightened levels with ascending negative indices. Operative advantages 

in these hyper levels work analogously, (i.e., hyper-reality inception acts as an existential 

ascension from other lower levels and the more unstable reality level 0).  Moreover, the 

payoffs given for recursive games are generalized for GTU constraints, 

 1 2

1

, ,
n

k k k k k kj j

j

H s s G e G


    , for GTU functions
kG and kjG generalizing the probability 

structures 
kp  and kjq  respectively, producing the GTU inception game 

  , , , , ,i i L
H A S G G

   , where G and G
 are GTU functions generalizing p  and p

, 

the probabilities for state transitions and absorbing into a recursive game module 

(inception level existence) respectively.  Stochastic recursion and time discounting 

should be accounted for because each inception level requires resources for time-
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accelerated computation.  To that end, a time-discounted version of recursive games in 

inceptions can be expressed using a generalized subadditive discounting (See Appendix 

B for definition of the time-discounted game value  
1,2

i

s i
v t 

   and the corresponding 

strategy, *a ), 

     1 2

1,2
1

, ,
n

i i

k k s k k kj si
j

H s s v t G e G v t 


        (4.17) 

 

Virtualization and Visualization of Risk in Inception Games 

The effective visualization and eventual virtualization of real time risk 

measurements in inception games is the final proposal we will investigate in this study.  

In our prior discussion on virtualization, Peircean virtualization is, at best, a 4
th

 order 

approximation to reality.  In the case of measuring risk in a general game structure, 

normally a payoff measurement is taken at the end of each game run in which agent 

stratagem are executed and corresponding payoffs are calculated.  Traditional risk to an 

agent before a strategy is executed is measured as the expected utility of the agent given 

the strategies and resultant returned values (loss or gain) to that agent.  Subjective 

measures of expected utility were reviewed in Appendix A, including those in emergent 

situations such as quantum probabilistic and causaloid settings, culminating in a general 

GTU-based risk operator.  Virtualization nonetheless, refers to both approximations to 

reality and proactive and interacting feedback mechanisms, mostly through skin pressure-

based haptic and tactile stimuli.  Here we will greatly generalize these feedback spaces 



 

118 

 

 

through multi-dimensional and sensorial apparatus and visualization, specifically tuned to 

risk spectra measurement – risk is a multi-dimensional object on a general space of 

possibilities and combinations of psychological and analytic profiling of the DM.  

Risk may be generalized to measure not only the relative utility – the inner 

product of uncertainty measures of choosing a stratagem with the value (payoff) output of 

the game from executing those stratagem – but also the amount of irrationality apriori to 

the decision point with respect to the gamble situation – the loss and gain magnitudes – 

and the risk spectral (risk aversion to risk aggressive behavior) psychological point of 

view of the DM.  This is at the least, a 3-dimensional object representing generalized risk 

of a DM at a specific decision point or branch of a game.  Additionally, the evolution of 

risk measurements and decision making should be visualized (and virtualized through 

just-in-time and ahead-of-time what-ifs measures).  We propose a simultaneous 

measurement of these risk components, including magnitude of loss(gain) and 

differentials of risk (instantaneous risk change rates). 

Humans react more effectively to visual cues than numerical ones and hence 

dramatic and dynamic visualization for risk will uniquely improve a DM’s arsenal of 

tools (Lima, 2001).  Traditional proposals have been given and used for expressing the 

visualization of decision making , including color and 1-D size changes of geometric 

objects such as variations of linear and circular dials and the use of static geographic map 

data, heat maps, etc.  (Roth, 2012; Bowman, Elmqvist, & Jankun-Kelley, 2012).  Bordley 

(2002) proposes using decision rings instead of decision (or game) trees to illustrate 

consequences of decision paths.  In Bordley-type decision rings, annular ring sections in 
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a circle represents levels of decisions, specific events are represented as segments within 

those rings sections, relative sizes of those sections are probabilities of those events 

happening, payoffs are represented as coloring in those segments, and expected utilities 

are calculated using mixed colors from outer segments assigned to color inner segments 

(Bordley, 2002).  Bordley’s goal is to visually comfort the DM with a non-analytic 

qualitative uni-object representation of decision-making.  The rings are 2-D and hence 

are limited in their spectral prowess.  Klein (2002) proposed a taxonomy of visualization 

types depending on dimensionality and context type where multi-dimensional 

information types are best displayed and conveyed by the use of stacked visuals such as 

parallel coordinates – polygonal lines which intersect horizontal dimension axes at the 

various positions that correspond to the singlet dimensional value of a multi-dimensional 

value point. 

Revisiting the concept of risk atoms introduced in the literature review, there is, 

nonetheless, a proper context in which to place micromorts – the underlying probability 

distributions that define the odds of a loss in a micromort and the estimation of their 

defining parameters based on population samples.  Denote a microprobability of event E 

with an estimated pdf of Sh based on a population P by Sh PE .  In this case, the pdf Sh

will also envelope into it the statistical estimator (operator), S, that defines Sh  based on P.  

Besides the infinitesimal nature of a 
610
probability event, there is no magical definition 

attached to micromorts.  More generally, smaller units of event risk may be formed so 

that a new dynamic atom of event risk can be defined as Sh PE  where  is a negative 
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integer power of ten,10 
.  In itself each atom Sh PE does not convey a value of loss or 

gain.  For that to be expressed, the event E must be assigned a relative value Q,T

E  that 

depends on an estimate (using a statistical operator T) of a consensus from the population 

Q.  The true ubiquitous and relative risk atom is thus defined as ,Q T

S Eh PE  .   With this 

parameterization, a rational DM would pay ,Q T

S Eh PE   for the microprobability Sh PE .   

In a stochastic (or GTU constraint-based) process, ts , over a period of time  ,k lt t

, a measure of risk through the number of risk units
,Q T

S Eh PE  ,  may be given in terms of 

the underlying (period) distributions, event, populations, and statistical operator(s) given 

in
,Q T

S Eh PE  .   In a game-theoretic framing, an action a (or strategy profile ) has 

consequences at each stage and over a period of time as well.  Hence, a DM can measure 

risk relative to a strategy profile  in a game G, by assigning a number of appropriately 

formed risk atoms
,Q T

S Eh PE  with the underlying parameters being defined by the game 

construct.  Finally, in this study one replaces probabilities h with GTU constraints g, to 

generalize the uncertainty situation for a game and hence, for risk atoms, 
,Q T

S Eg PE  , 

where S is (are) uncertainty operators or algorithms that define the estimates of Sg .   

The visualizations we envisage are based on multi-dimensional representations of 

the various aspects of risk, as proposed before, including risk psychological profiling of 

the DM, displayed as floating 4-D polytopes (ellipsoids in the prototype) that collide with 

each other in plane intersections.  Ethical sensorial extensions to 4-D spacetime visual 

limitations of humans are made via various sensorial stimuli including chromatic, 
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olfactory, skin-pressurization, thermoception, wavelength optics, surrounding air 

movements, auditory spectra, proprioception (body awareness), bariception, 

equilibrioception (balance),  pilorection (hair follicle extension during stress), micro 

senses, intuitive fuzzy senses as functions of physical senses, and emergent synergistic 

metasenses from combinations of individual senses. Some studies have suggested a range 

of reasonably delineated human senses between 14 and 31, many being functions of the 

five main sensory systems of sight, hearing, taste, smell, and touch.  Nociception (pain) 

and interoception (hunger) are two subjective, but possibly uncomfortable receptor senses 

that will not be included as well as those receptor senses that tend to mask or confound 

one another’s measurements or highly speculative psychic or telepathic senses.  As 

important as the stimuli that are sensed are the memory systems that store the 

remembrance of those sense values – sensory memory which consists of autonomic 

systems of iconic (visual), echoic (hearing), and haptic (touch) memory types (Colttheart, 

1980; Dubrowski, Carnahan, & Shih, 2009; Claude, Woods, & Knight, 1998).  While 

these autonomic-based sensory memory systems are limited in time, there resources are 

important to an overall time computational solution for DMs to more optimally process 

risk analytics via these simultaneously mapped sensorial interpretations.  The question 

remains, with a newly expanded resource of sensory risk evaluators, what is the working 

memory and cognitive load for this new extrasensorial risk analytics?  Additionally, 

psychophysics endeavors to find answers pertaining to the thresholds of detection and 

differentiation in sensory systems (i.e., subliminal levels of stimuli and threshold 

boundary probabilities) (Gescheider, 1997).  Detection thresholds will signal the presence 
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of a stimuli and differentiation threshold will convey the smallest differential between 

levels of stimuli that is detectable by the subject (Peirce, & Jastrow, 1885).  These 

sensory thresholds therefore delineate the possible invariant measurement parameters for 

the risk-to-sensorium mapping so that if 
det and diff denote the detection and 

differentiation thresholds respectively, then an affine risk-to-sensorium mapping

:k r ks   that maps the k-th risk component of the game risk tuple 
r , to the assigned 

sensory system
ks is scaled invariantly by      0 0 det diff ,k ks            

where  det 0 diff,       are the lowest sensory stimuli point and stimuli unit mapped 

from the lowest risk value and risk unit respectively. 

In sensory systems, sensory receptor cells and neurons are mapped uniquely by 

sensory receptor molecules with distinguished rhodopsin molecules that possess 

idiosyncratic chemical reactions to external feedback which can both inhibit other 

receptors while intensifying their own with the exception of certain color optical 

receptors in larvae during metamorphoses (Mazzoni, Desplan, & Celik, 2004)  

(Hofmeyer & Treisman, 2008).  Pathways to sense receptor neurons or nerve endings (for 

non-neuronal receptor cells), along with those specific receptor cells represent unique 

sensory patterns in sensory systems.  Each sensory pattern can then be mapped to a 

potential sensory system.  In this way, psychosomatic potentials for unique mammalian 

senses are numerous, far surpassing the posited range of 14 to 31 human senses 

mentioned before.   
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Including the possibility of metamorphoses of sensory systems through lifecycle 

changes in organisms, the true range of unique senses becomes dynamic with neuronal 

and nerve receptor reconstruction.  Hence a theoretical limit to the number of potential 

senses in mammals is only limited by the mortality of the robust subject.  With this 

potential for a human sensorium, information stimuli can be directly mapped to unique 

sensory nerve or neuronal receptor systems.  In a recent experiment with remote 

noninvasive EEGs, a brain signal corresponding to a right hand push down button 

movement from a sender subject was successfully received by a receiver subject 

transmitted over an Internet connection (Rao and Stocco, 2013).  This example points to 

future refinements of brain signal transmission of more subtle communications.   

Nerve or neuronal receptor stimuli are triggered by chemical thresholds to be 

matched with the relative risk component value, activating gradient potentials which in 

turn initiate transduction in cells (see Figure 3).  In this manner, a risk measurement is 

conveyed directly to a particular sensorial system in the DM sensorium.  Here we use the 

word sensorium to refer to the universe of potential sensory systems in an adaptive living 

organization  As an example thermoreceptors may be divided into spectrally regional 

receptor systems that have adapted during the lifetime of the organism, (i.e., separate hot 

and cold spectra reception via transient receptor potential – TRP proteins) (Viana, la 

Peña, & Belmonte, 2002).  Within these thermal spectral regions, components of risk 

such as risk aggression/aversion may be mapped as succinct chemical stimuli to the 

appropriate thermal sensory regions.  Recently, Someya (2013) has developed, in lab 

prototypes, a bionic skin interface that is capable of sensitizing external stimuli to touch 
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neurological centers, which succinctly digitizes those simuli.  Such interfaces labeled e-

skins, can then connect and map external measurements of risk spectra to appropriately 

calibrated neurological stimuli, enhancing traditional means of visual information 

display. 

In a potential cyclic causal feedback mechanism, the increase in risk 

aggressiveness has been postulated to be linked to increased dopaminergic activity, 

especially in adolescent puberty.  Post adolescent self-regulation tendencies shift the 

pendulum back to risk aversiveness (Steinberg, 2008).  Increased levels of the bio-

chemical neurotransmitter dopamine actuates increased risk taking and hence a tendency 

to certain decision strategies rewarding large gains in the midst of large potential losses.  

The cause-effect cycle of visualizing a sensory system that is correlated to increased 

dopamine blood-brain barrier amounts in assessing a risk component may then be 

recursive in itself in a risk sensorium measurement. 

Natural sensing of risk, using the evolution of virtual hair-on-the-back-of-your 

neck moments, can help develop map isomorphisms between components of a risk 

manifold and the human sensorium manifold .  Traditional quantitative graphics 

depict singular components of risk, usually in 1, 2, or 3 dimensional plots.  On needs to 

expand this sensorium to include a functional subset of that full sensorium.  We will 

consider in the next section a DIY holodeck-tyep approach in depicting this functional 

subset of . 

Spacetime-quantum components can be mapped to more visually effect 

communication of risk components.  For example, consider the tuple 
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  , , , , , ,P q G S g p Q   consisting of  – risk aggression spectrum, P – payoff 

magnitude, q – quantum-gravity probability frames (or GTU generalized constraints), 

 , , ,n n n n nG S g p Q – evolution of recursive game components  , , ,n n n nS g p Q ,where for 

the nth evolution, 
nS is the state space,

ng is the GTU constraint, 
np is the agent space, and 

nQ is the payoff functional.  The visual geometric object representing components of this 

tuple will be called an i-morph (information morph).  This object is capable of morphing 

(or being morphed by an external stimuli such as user touch, poke, or lathing)  due to the 

 
Figure 7 - Mapping risk components to sensory systems 

 

dynamics of the risk space within the evolution of games (in particular, the recursive 

nature of inception games).  Each orthogonal dimension of the i-morph represents the 

value of a risk component.  The width, length, and depth of a geometric 4-D i-morph 
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object relative to its centroid will be mapped to the tuple with the time component 

mapped to the evolutions  , , ,n n n n nG S g p Q in the following manner: as time t progresses, 

the game components are mapped to recursion game i-morphs that are in turn, visually 

connected to the original i-morph representing the three risk components.   

Aside from the interaction of i-morphs which will be described later, a 

generalized divergence metric, D will be applied to two or more inception games in order 

to measure global similarities, (i.e., how similar are inceptions to each other in terms of 

risk and game components including equilibria spaces).  See Appendix B for a discussion 

on divergences as generalized distance metrics in general spaces.  See Figure 4 for a 

visual description of i-morphs.  In that figure i-morphs are visually portrayed as 3-D 

ellipsoids, one for each spatial dimension, along a time dimension.  However, in general, 

an i-morph can be a general 4-D object with sophisticated shapes projected onto each 

coordinate plane and a time evolution that may have curvature based on relativistic 

effects.  Quantum effects are portrayed as fuzzy boundaries on the geometric i-morph 

object.  In Porikli & Yilmaz (2012),  silhouettes, general skeletal figures, and object 

contours are proposed to represent non-rigid objects for video analytic tracking.  

Corresponding general non-rigid i-morphs may also be represented by these generalized 

shapes, expanding to general stick  figure Delaunay triangulations, 4-D silhouettes and 

object contours that can be changed in multi-faceted mathematical transformations 

pertaining to risk components. 
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These generalized i-morph objects represent the visual geometric sensory stimuli 

for conveying risk information to the DM.  The general risk object will be sensed through 

a compendium of sensory systems – the risk sensorium.  Visual geometric objects and 

evolution of corresponding game components within an inception game are mapped at 

the active inception levels (local automata), globally, at a bird’s eye view of inception 

risk given by a measure of convergence to an inception and the qualifying risks that are 

part of that epoch in the inception game, and at mesoscopic levels which are at the 

boundaries of local inception levels and global inception, the spacetime where decisions 

are transcended to enter or leave inception levels. 

 

 
Figure 8 - i-morphs representing risk information vector 
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 Interaction is proposed in which moving, nudging, poking, touching, or lathing i-

morphs is a means to collide (or manipulate individually) two i-morphs in order to 

measure their similarities and dissimilarities.  Mid-air displays of  information objects as 

depicted in (Rakkolainen, Hollerer, DiVerdi, & Olwal (2009)  in the form of  i-morphs 

will be prototyped for optimal navigational flexibility in 4-D holodeck space.  The spans 

of the overlapped region and the feedback force against pushing one against another will 

give relative impressions of similarity.  Touch against pushing and pulling objects and 

interactively moving those objects in heads up display (HUDs)-like spaces will build an 

environment of immersive measurement of multiple risk scenarios and inception games. 

 In order to receive information conveyed as a risk vector in multi-sensorial 

manners, an accommodating environment must be utilized.  This environment must meet 

the goals of multi-sensorial and dimensional presentation, interaction, and simulation.  

Immersion has been shown to lead to more productive processes in the military over the 

period of display technologies used (Hooper, 2004).  Such an environment is 

approximated best via a VR world such as a Star Trek-style holodeck.  Holodeck 

construction consists of 3-D 360
o
 surround immersive fully embodied simulation of 

visual, perceptual, skin pressure sensitization, body mechanical interaction, and other 

sensorial interaction.  While true holography consists of the generation of overlapped 

images using diffraction grating and light interference, currently, autostereoscopic 

techniques utilizing binocular perception of 3-D depth, are mostly employed to simulate 

3-D images for holographic imaging especially with 3-D non-glassware technologies.  

The early spectrum of holographic methods, techniques, and technologies were 
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investigated in Hooper (2000).  Currently, the most effective and practical holographic 

methodology is multiscopy in autosteroscopic images (Markov, Kupiec, Zakhor, Hooper, 

& Saini, 2006).  Multiscopic techniques for autostereoscopy employ multiple camera 

perspectives including the most recent developments for a low power version, HR3D 

(Lanman, Hirsch, Kim, & Raskar, 2010).  Holodecks are quickly converging to the 

virtuality part of the Milgram spectrum of mixed reality visual displays (Milgram & 

Kishino, 1994).  Cave automatic virtual environment (CAVE) environments approximate 

these immersive simulations based on enclosed or nearly enclosed room-sized cube areas 

where projections on the inner walls (or subset thereof) of a CAVE are given that 

simulate 3-D world movements and visualization.  The CAVE notation also alludes to 

Plato’s allegory of the cave–reality as shadows on cave walls in his Republic (Allen, 

2006). 

 The authenticity of Star Trek-style holodecks relies on 3-D holographic projection 

and matter reconstruction. CAVEs do not utilize holographic images.  Holography is a 

mathematical method of reconstructing a 3-D image with Gabor-transforms of 1-D 

wavefronts overlapped in such a way as to add component fidelity as whole images 

(Gabor, 1948;1949).  Matter reconstruction while theoretically possible in cellular 3-D 

printer reconstruction based on accurate biological substrates, is not near-future practical.  

On contrast, modern digital holography has made progressive strives to the point of the 

development of fast frame, near video rate 3-D holographic streaming video (holovideo) 

with modest computing resources and minimally lagged multi-level (touchable pressure-

level sensitive) haptic holographic systems  (St.-Hillaire, Lucente, Sutter, et al, 1995; 
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Plesniak, Pappu, & Benton, 2003; Page, 2013; Redux Sound and Touch, 2013).  In 

Takayuki, Tatezono, Hoshi, & Shinoda (2008) and Takayuki, Tatezono, & Shinoda 

(2008) ultrasound waves are used to simulate tactile and haptic touch on holographic 

images.  Haptic holography is important to manipulate risk i-morphs in our scheme 

because multi-level pressurization sensitivity will convey the DM’s more precise desire 

to change or evolve decision risk and strategies for proceeding with inception games.  

Each risk component is able to be manipulated based on strategy rules.  Those 

manipulations may mean directional change as well as magnitude.  Hence moving and 

changing the shape of i-morphs will be equated with this multi-faceted manipulation of 

risk components. 

 First and early second generation holodeck prototypes are built using separate 

components that simulate visual, haptic, body movement interaction and other sensory 

stimuli such as auditory and olfactory.  Although a system has not been proposed or built 

using more than 5 sensorial stimuli, we propose that a multi-sensorial holodeck can be 

built using commercially available components for each aspect of a holodeck experience.  

An example of a practical framework for building a prototypical holodeck is given by 

Project Holodeck using the Oculus Rift head mounted 3-D visor video feedback set, a 

Playstation Move optical system for motion tracking (upgrade to Playstation 4 and Eye 

Camera for our DIY simulated holodeck), a Razer Hydra system for body tracking, and 

the Unity3D game engine software system (Project Holodeck, 2013).  The Oculus Rift 

HMD immersion is based on a field of view (FOV) of 110
o
 diagonal and 90

o
 horizontal, 

creating a spherical mapping image for each eye with a resolution of 1920x1080 and 6 
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DOF low-latency tracking.  Oculus Rift has a low cost SDK.  Dioptric correction is 

manual on the headset and interpupillary adjustments are made via software.   

The Microsoft Xbox One Kinect 2.0 HD system may be adapted to fit into this 

holodeck schema replacing the Playstation Move.  Triangulating (coordinating) three (or 

more) kinect systems will make more premise tracking components and panoramic 

viewing for this 3-D framework.  The Kinect 2.0 system utilizes a light ray radar 

mechanism to measure macro movements at a few feet of distance from the sensor.  The 

proposed DIY holodeck will envelope this triangulation scheme for tracking.  Active 

moving is not addressed in this system.  Hyperkin has developed a prototype system 

using the Xbox One Kinect 2.0 with an Oculus Rift HMD executing the action role-

playing open world (non-linear) video game Skyrim (World News Inc, 2013).   

Notwithstanding these technologies, we investigate more general and powerful 

natural user interfaces (NUI) – the ability for humans to interact with computers, 

providing inputs at the level of human sensorium such as micro-tracking finger, hand, 

arm, leg, speech and facial gesturing and touch pressurization sensitivity among other 

natural human output  conduits (Wigdor and Wixon, 2011).  These developments are part 

of the zeitgeist of the disappearing UI theme (Jasti, 2013).  The recent explosion in NUI 

technologies and more efficient computational algorithms for converting location 

coordinates has given rise to the realization of micron-level tracking precision through 

the use of Leap Motion’s gesture-based 3-D motion sensing (and capturing) proprietary 

system developed by D. Holtz  (Foster, 2013).  This sensor utilizes algorithms that 

measure differentials in light shadings at object boundaries as those objects move.  
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Virtual haptic interfacing is also possible through NUIs through continuous tracking of 

light hues and shades.  The use of mathematical shape analysis is also making more 

possible fast near-zero delay computational times for object shape morphisms that are at 

the heart of novel NUI software mechanics (Sinha and Ramani, 2012). 

 
Figure 9 - DIY simulated holodeck components 

 

The use of micron-precision 3-D motion sensing interfacing with n-D holodeck 

displays, is the ultimate goal of the risk holodeck system.  In this sense, this proposal for 

an n-D (risk) holodeck coupled with a logical extension of 3-D motion sensing systems to 

n-D interfaces, is a generalization to even Star Trek-like holodecks.  An n-D motion 

sensing system would approximate a continuous tracking of every human nuance such as 

micro-expressions, body, muscle (through electrical activity), and eye movements, and 

other natural human output streams such as speech language idioms and idiosyncrasies.  

The Peircean differential between cognitive and real activity is further blurred by an n-D 
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interface, n-D holodeck display and a final ingredient of an n-D simulators in the form of 

extensions to 3-D printer technologies, chemical emulators, and the novel approach of 

building pure von Neumann and Gӧdel simulators as automaton that self-propagate at the 

physico-computational levels.  

The inclusion of a Virtuix Omni treadmill adds omni-directional walking surfaces 

for simulated natural user movement.  The Razer hydra system may also be replaced with 

an ARAIG vest that simulates multi-sensor and pressure plates and auditory feedback 

(ARAIG ,2013).  The auditory feedback system may be augmented by an immersive 

external DIY 10.2 (or 22.2)  (dome) surround sound system or simulated 10.2 

headphones, the minimum number of speakers for spatial sensing to be heightened 

(Holman, 2001).  Matching ultra high definition resolution, 22.2 surround sound systems 

are being developed to expand on spatial sensory experiences (Hamasaki, Nishiguchi, 

Okumura, Nakayama, & Ando, 2008).  Olfactory simulation can be generated utilizing a 

Digi Radio linked to a device cloud service iDigi, utilizing the XBee Internet gateway 

XIG, and connected to a scent dispenser  (Digi, 2013).  Pronounced and exaggerated air 

movement actuated by directional fans with controllers linked to the measurement of a 

risk component can be made receptive to a sensory response to that air flow differential 

or natural wind in a hexagonal or surround array of fans and controllers (WindEEE 

Research Institute, 2010).  

Game software engines can be built using the free open source (FOS) Gambit 

library for game theoretic simulations (McKelvey, McLennan, and Turocy, 2010).  An 

alternative Java library named NECTAR has been built in a similar fashion to that of 
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Gambit (utilizing homotopy and gradient descent methods for calculating Nash 

equilibria) and can be considered as another foundation for building the study game 

engine.  In a more efficient modified version of the gradient descent method of Govindan 

and Wilson (2009), Blum, Shelton, and Koller (2006) have produced a software library 

for computing equilibria in general topologies of games and will be included in the 

library to be used in this study’s game engine.   

In an attempt to introduce gamification of the interface to the game risk holodeck, 

a gamification engine may be utilized such as BunchBall’s Nitro gamification software 

engine (BunchBall, 2013).  The gamification of game risk analytics manifests the active 

participation of DMs in the guise of game environments that have transformed ordinary 

web interfaces into interactive game simulation interfaces.  Gamification, more generally, 

enacts an environment of game dynamics and mechanics into non-game contexts, 

scenarios and presentations (Marczewski,. 2012).  Nonetheless, this gamification of real 

time risk dynamics should be done in the spirit of gamefulness – empowering DMs to 

feel, in a multi-sensorial manner – a general and broad bird’s eye view beyond 

visualization, of the evolution of strategy spaces in social-cosms, noӧspheres of 

interaction. McGonigal (2013) defines gamefulness as the ability of games to present 

flexibility of needs and wants and to manifest environments that produce such feelings of 

achieving those wants and needs. Ludic interfaces may be more appropriate for a more 

playful or non-evasive mechanism to interact with risk dynamics of an organization 

(Gaver, 2009).  An example of a ludic interface for risk analytics is a “teetering on the 

brink of disaster” scenario, where high reward is potentiated alongside high loss.  



 

135 

 

 

Perturbations along these “all or nothing” stratagem are often neighbors to more 

conservative stratagem (risk aversiveness) given that iterative amounts of new 

information have been introduced in a just-in-time fashion.  The playfulness of garnering 

new insights (information and intuition) in real time may lead to different risk profiles for 

the DM and hence more potential for co-opetive strategy play (competitive “everyone 

wins something” outcomes). 

The prototype risk holodeck for this study will then consist of a triangular array of 

Kinect 2.0 motion sensors synchronized on an Xbox One for more precise tracking of 

user movements navigating on a Virtuix omidirectional treadmill and hand and body 

gesturing at HD (or Ultra-HD) resolution and ultra-wide angle visualization on a Oculus 

rift HMD.  An array of precisely controlled surround dome fans will simulate wind and 

temperature generation with an iDigi Xbee-based scent generator controlling olfactory 

output. 

In an extension of a this risk prototype holodeck, role playing social risk 

environments can be simulated utilizing a series of singular holodecks.  Consider an array 

of connected risk holodecks sharing in real time all aspects of information and data 

dynamics of an inception game involving an entire coalition space (inception and 

inceptee teams).  An inception/inceptee team, a subcoalition of either, or an individual 

agent may be represented in a player holodeck.  Subsets of these teams may be automated 

subgroups of agents based on a diverse uncertainty model regime.  Therefore, game role 

playing agents (subteams) may be active real agents in a holodeck or part of an 

automated subteam.   
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Figure 10 - Bi-lens view and layout of prototype DIY risk holodeck 

 

Generators for other sensory system input are not currently economically practical 

and combinations of other senses are not well understood for their evolutionary purposes.  

Hence the initial concept prototype will be limited to these few sensorial outlays.   

Theoretically, as discussed earlier, a general game risk component can be mapped to a 

neural/nerve receptor so that a potential hyper-sensorium is possible.  That each sensory 

system can be mapped to game risk components in a way that lends itself to a type of 

über-measurement or hyper-sensitivity of risk will be briefly outlined later in this section. 

Inception games have been presented as metaphors for evolutionary social 

behavior in this study.  Real time monitorization of such games can be visualized through 
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the manipulation of general risk components connected to the game structure of 

inceptions given agent, payoff,  and state evolution transition dynamics, and the physics 

of each inception level.  Just-in-time analytics are able to then help predict patterns of 

future behavior, albeit with exponentially exploded limitations.  Recently, in role-playing 

games, analytics has been applied to better understand the dynamics of development of 

that game.  This quantitative approach to game evolution, gameplay, and game 

visualization has come to be labeled game analytics (Medler & Magerko, 2011).  

However, these analytics collect already played out dynamics.  Little is produced in terms 

of pattern analysis and just-in-time prediction.  The prototype presented here proposes 

that evolutionary patterns be gleamed from the running of inception game scenarios as 

what-if epochs, much as in the movie dynamics.   

Inception levels are entered into a what-if scenarios where the parameters of risk 

and decision-making, such as payoff, coalition makeup, and state transition rules, along 

with the physical rules of engagement have been altered to emulate another possible 

future.  In a reductionist sense, these what-if scenarios can be calculated in simple 

spreadsheet math.  Multiple objective and agent games can also emulate such calculations 

in the operations research literature.  This metaphor seems more fitting for multi-agent 

social games of engagement with dynamic agendas.  Interaction with the model is as 

important as the calculus of risk for these social games.  Hence, an immersion of 

involvement into the dynamics of inceptions is important to the psychological connection 

to decision-making in society. 
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While anthropomorphic or mammalian sense spectra will need to be appropriately 

matched to the spectra of game risk components, a related development is the 

augmentation and hyper-sensitization of those very same sense spectra – transhumanism 

(H+) and Kurzwelian singularities (Kurzweil, 2006; 2012; More, 2013).  Khamis, Jones, 

Johnson, Preti, et al. (2010) have recently developed digital scent olfactory augmentation 

with a conceptual prototype of 2,000 olfactory chemical receptive sensors (canine range) 

compared to 400 human nasal sensors.  In Yang, Coll, Kim, & Kim (2011) vision 

augmentation is proposed to hyper-track phenomena with multiply-connected cameras 

and information fusion, analyzing the understanding of complex scenery – a feat that is 

beyond the limits of current human visual processing with field of view, angular 

resolution, visible spectrum, and blind spot limitations.  Sensory systems may be 

extended by proxy, (i.e., mapping extrasensory ranges of one sense to normal sense 

ranges of another).  In this vein, Thomson, Carra, & Nicolelis (2013) have coined the 

term sensory neuroprostheses to mean the connection of existing hominid neuro-

transmission sites for sense receptors to spectra of some phenomena, such as ultra-violet 

light that are not detectable by receptors in normal hominids with wavelength ranges 

between 390 and 750 nanometers.  Recently, Hauner, Howard, Zelano, and Gottfried 

(2013) have shown that by introducing multiple sensory feedback via an added scent 

stimuli, fear extinction was possible in slow-wave sleeping individuals monitored by 

fMRI.  The implications for a fuller sensorium of induced feedback flows points to the 

potential for sharper decision processing training without or at least with attenuated risk 

aversion when none is causally linked to objective results. 
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Future Considerations 

Inception game models can be further generalized by expanding on more complex 

and realistic scenarios in real world conflict, government, politics, and economies.  For 

example, the rules of inception levels can be expanded to include limiting cases of limbo, 

(i.e., the asymptotic behavior of equilibria and game solutions as l where l is the 

number of embedded inception levels) with the prospect of possible convergence of game 

solutions to  Nash equilibria or   evolutionary stability as well as to other forms of 

game solutions and equilibria discussed in the appendices.  Computational time dilation 

schema may be made more fundamental for strategy development, (i.e., synchronized 

near-parallel time dilation in higher level inceptions may manifest the development of 

more advantageous game strategies through faster search or computation of game 

solutions).   

The computation of risk regions of stability for games is a new approach that ties 

the topology of agent or collective coalition team risk spectra expressed in phase space 

(as in chaos theory) to game solution stability regions may be investigated.  Risk regions 

are multi-dimensional risk profiles for agent DMs.  In this maneuver, regions of risk 

spectra that agents display can lead to different manners in which game solutions may 

converge or diverge.  In this way, game stratagem can be shaped or manipulated in order 

to provide stable game solutions that are advantageous to subsets of agents.  

Inceptions are a very general approach to conflict games involving dynamic 

information transformation and transit between agents.  Games that involve information 

imperfections in the form of transient noise (both deliberate or unavoidable), inter-agent 
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and inter-coalition exchanges, or natural distortions (common knowledge among all 

agents that leads to noncausal biases) have been studied in isolation.  By combining all 

forms of disinformation in inceptions, a more general model for all games sculptured in 

the mold of generalized statistical games can be made. For example, in Teng (2012), a 

linear Gaussian noise model is utilized to conceptualize an iterative Bayesian update 

schema (Bayesian  equilibrium iterative conjectures – BEIC) for forming a convergence 

to prior distributions (and hence a-posteriori distributions) of strategies to build mixed 

stategy stable solutions (equilibria) to games with imperfect information that are 

expressed as general noisy games.  This schema starts with an initial uninformative prior 

distribution in the form of a uniform distribution of strategies.  By extending and 

generalizing the game noise model to nonparametric cases or even more general 

information geometric concepts of noise in probability spaces, inceptions may be made 

more expressive (Amari and Nagaoka, 2007).  Even in emergent game theories as 

discussed here, apriori probability distributions are given for the development of stable 

solutions and equilibria.   

The prospect of using information criteria( IC) that depend on a distance metric 

(or divergence) in the geometry of probability spaces for statistical estimates, such as the 

before mentioned divergence families, (i.e., KL and f-divergences) with suitable 

properties of parsimony and robust model fitting, applied to strategy estimation, may 

point to more robust estimates of distributions of strategies and hence of better equilibria 

and game solutions (Nakamura, Mees, and Small, 2006; Taniguchi and Hirukawa, 2012).  

In the case of noisy games, dynamic payoffs, and game state transition probability 
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models such as generalized random processes, additional robust estimates for these game 

components may be computed based on IC-induced statistical functionals.  

The development of graphical tree representations for belief revision-based 

dynamics for normal-form versions of inception games will be investigate.  Simulations 

of a quantum-gravity interaction dynamic based on the causaloid framework in inception 

games can be done using general LQG or SuperString constructs.  One may develop 

more efficient computational models for searching/calculating game solutions for 

inceptions, (i.e., Nash-like, evolutionarily stable, and alternative solution types 

introduced in this study). The development of graphical display models to simultaneously 

visualize/sense local (micro or super-micro) interactions with (super) macro and meso-

level dynamics in inception games should be investigated as a means of building a 

dynamically focused-based network view of inceptions.  Finally, in a follow up study, 

real-world scenario data using mixtures of classical and non-classical iuncertainty 

operators via GTU representations in inception games will be studied so as to compare 

obustness of the discussed inception models. 

Conclusion 

In this study, a novel approach to conceptually modeling a game theoretic 

structure involving deceit, coercion,  and information extraction utilizing generalizations 

to mathematical social rules of engagement that involve multiple levels of inceptions 

(analogous to hypothetical lucid group dreaming), in the spirit of the psychological 

science fiction movie Inception, were constructed.  Emergent game theories, including 

behavioral economics framed by quantum-gravity, general social, and generalized 
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uncertainty games were used to show how spectral irrationality (rational/risk spectra), as 

manifested in psychologically mimicked recursive inception levels, can be modeled, with 

deception leading to attempts at information extraction from groups or individuals, 

resulting in possible versions of game equilibria and solutions.  Inceptions were framed 

as generalized recursive social coalition games.  Analogies were drawn between 

inceptions and emergent game structures with the hope of using powerful generalized 

uncertainty frameworks to express them.   

Virtual world environments were posited as a conduit for performing simulations 

of these inception games as they can accommodate game strategic mixtures of automaton 

and human     two sources of interaction for the further study of inceptions for decision 

strategies in general social coalition games.  The multi-dimensional nature of multi-

sensorial interfaces between the human sensorium and risk manifolds in games, 

particularly in inception games, may be manifested in holodeck and holographic 

panoramas.  This study presented possible DIY setups for such risk information 

immersions in experiencing decision games of the nature of inceptions. 

Inception games are a conceptual abstraction for generalized physical-social 

interaction with resource exchange (inception and other utility tradeoffs). Diversity of 

uncertainty models and evolutionary dynamics can be included in inception game 

descriptions and representations. Simulations may be run based on mapping game 

dynamics to real-time risk sensorium for the decision-maker or coalitions involved in the 

risk theatre.  Multi-dimensional and sensorial holodecks are ideal tools for mapping 

complex game dynamics to decision-making entities via risk connectives discussed in 
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this study.  Incpetion game generalities are representable by higher order meta-

mathematics such as category/topos theory, automata theory, and biologics through risk 

sensorium mappings.  Inceptions are novel ways to interpret general complex conflict 

scenarios independent of the domain of application, (i.e., military maneuvering, business 

ecocycles, government-social interaction, etc.). The lack of detailed simulation algorithm 

results in this study are to be accommodated in simulation/algorithm development, 

testing, collection of results, and comparative analysis in follow up studies. 

Other conclusions based on inception-induced games are that strategies that 

emulate the rules of deceit and information extraction, as practiced in the concept movie 

Inception, are theoretical musings about what could happen in negotiation, diplomacy, 

and conflict in real world social co-opetive interaction.  This meta-model for game 

conflicts does not attempt to formulate a general theory of social behavior between 

conflicting interests among governments, political groups, or competing coalition groups 

in industries.  Many other factors are involved when emulating socio-economic 

dynamics.  The hypothesis of this study’s model may not generalize appropriately under 

more complex and restrictive action spaces, payoff dynamics, and engagement rules 

based on more formal negotiating methodologies.  Inceptions are toy models for 

complex, adaptive, and emergent types of conflict games involving social agendas that 

are intertwined within multiple coalitions. 
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Appendix A: Classical and Non-classical Decision-Game Theories 

Decision Spaces 

The classical approaches to decision behavior descend from the seminal expected 

utility (EU) theory of von Neumann & Morgenstern (1944). EU assumes rational 

behavior of the DM in the sense that they will pick the choice that will maximize their 

utility function.  Worth of a decision is equated with the value of the utility in EU.  The 

DM or agent is specified the following objects in the universe of discourse: (1) a set of 

available actions, , (2) a set of possible states of nature, ,  (3) an outcome associated 

to each action-event/state pair,  , , ,i jx a E a E  , (4) a function on x, u that 

measures outcome utility to a DM so that a preference order for that DM can be 

developed, (5) a measure of confidence or degree of knowledge with respect to the 

chance of occurrence of event/states, normally a probability or possibility measure, p , 

(6) a preference order for the DM,  for ordering the preference of alternative actions to 

be taken, (i.e., f g means f is preferred over g or is at least as good as g), (7) a loss (-

gain) value, L assigned to an outcome utility value, u, and (8) a criteria that assigns an 

action to be selected by an agent, :U    for (time, history) pairs, 

 , ( )t h t  , where  t is the space of possible (history,action) path states from 

beginning recorded time, 
0t to the current time, t ,  

0 0 1 1
, , , ...,t t t t tE a E a E .  Here,   tU t a is 

structured so as to satisfy some interest that the agent has with respect to its environment. 

In the case of classical EU-Bernoulli utility theory 



 

179 

 

 

        arg max ,t t
a

e

U t L u x a e p e de


 
  

 
   (4.18) 

the agent has self-interest to maximize its dynamic utility and the integrand is integrable 

(Lebesgue or Stieltjes-Riemann) so that (3.1) exists.  In (3.1), past history is taken into 

account to reformulate the loss/utility function
tL  and probability

tp at time t. This is the 

Bayesian interpretation of updating decision spaces.  A posteriori probability distribution,  

  
   

   

|
|

|

t t

t

t t

e

p x E p E
p E x

p x e p e



  (4.19) 

following Bayes theorem with added information  x and historically updated prior 

probabilities, refines  U t in the obvious fashion: 

       | arg max , |t t
a

e

U t x L u a e p e x de


 
  

 
   (4.20) 

In the simplest case, the utility function, u, is a real-valued function that preserves 

DM preference order, (i.e., ( ) ( )u f u g f g  ). Nonetheless, for a given DM 

environment, the space of plausible utility functions,  u  is not isomorphic to the 

space of preference orderings,  

 . More directly, for some preference orderings, 

o
, no utility functions, 

0u  may exist.  This is no more ostensible than in modeling 

preference orders in cognitive and behavioral environments since in the classical EU-

Bernoulli utility theory, event probabilities and outcomes are assumed to be known and 

preference orderings are well defined and transitive.  Violations of these assumptions and 
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adjustments made to EU-Bernoulli utility theory that claim to accommodate these 

scenarios will be reviewed and investigated later.  In the case of a finite discrete 

state/event space, the traditional self-interested rational agent should choose to perform 

the action  that maximizes the finite discrete expected utility: 

    |
iE i

i

EU p U E    (4.21) 

where 
iE  is an enumerated event, 

iEp is the objective probability of 
iE  happening, and 

 | iU E is the utility value of choosing actionwhen
iE happens.  Later Savage (1954) 

developed the subjective expected utility (SEU) in which subjective probabilities replace 

the objective ones in (3.4) and are tied to payoffs when real probabilities are unknown or 

have elements of uncertainty.  

Simon (1957) disputed that all EU-based measurements of decision worth were 

valid because humans exhibit what he called bounded rationality – the limited ability of a 

human to make EU-type rational decisions based on inherent uncertainty or lack of 

information involved in making inferences pertaining to data, probabilities, events and 

outcomes, and risk measurement from data, time and psychological constraints.  

Moreover, inherent limitations in computational aspects of measuring utilities under 

constraints further defies rational decision processes.  Instead, Simon proposed that the 

DM heuristically simplifies the utility function to achieve optimal values to reach, using 

more available information and calculations to satisfy their decision goal target.  This 

process was famously labeled satisficing. Simon further enumerates a program for 

devising more accurate utility function spaces including, (i) vector valued multi-faceted 
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utilities, (ii) accounting for information cost, and (iii) forming constrained utility function 

spaces that depict human-centric limitations and patterns of behavior.  Simon’s doctrine 

paved the way for further work in and the blending of ideas from behavioral economics 

and cognitively limited decision science.   

Subsequent to the bounded rationality doctrine, Hixon (1987) showed that the 

near-optimal condition known as -rationality can better frame approximate real world 

suboptimal utilities.  Essentially, if the optimal utility for a decision is given by 
optu then 

under certain conditions on a decision space, a family   of  -rational actions satisfying 

the condition ( ) ,optu u a a     exists.  The space of actions,  , under certain 

conditions of a corresponding multi-agent game, will generate corresponding -Nash 

equilibrium and -evolutionary stable strategies.  Hence, if DMs are satisficed enough by 

taking actions in  in certain co-opetive games, stratagem become stable, even under 

suboptimal bounded -rationality.  This result had important ramifications for it implied 

that even utilizing tit-for-tat or under-cutting game strategies in an otherwise fair 

economic game, long-term co-opetive stability likely arose.  In this paper we will denote 

such strategy or decision action types as -decision spaces.  

Anscombe and Aumann (1963) developed an EU-based theory that attempted to 

accommodate both uncertainty and risk measurement of those actions with associated 
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payoffs by connecting utility functions on both lotteries (probabilistic systems for 

distributing prizes) and rewards (risk amounts) to define more realistic subjective 

probabilities. These EU-based approaches to decision processing are based on rational 

decision making. As has been profoundly obvious, real-world decision processes are 

irrational on a spectrum. Concepts measuring -decision spaces in more varied and multi-

dimensional ways, can form the basis for developing a decision-rational spectrum 

dependent on some definition of a vector rational parameterization,  (e.g.  may 

parameterize irrationalities stemming from risk, ambiguity, and uncertainty aversion 

metrics).  We shall revisit this notion of decision spectra using a proposed VR 

visualization. 

Kahneman and Tversky (1982:1984) and Kahneman (2011) and others have 

demonstrated that laden irrationalities take place in decision making under very general 

conditions of uncertainty, risk, and stress.  Violations of the sure-thing principle (STP), 

Savage (1954), confound rational behavior in individuals who decide, in the face of a 

sure bet to gain something from a gamble, decide not to participate.  The two-stage 

gambling problem and prisoner’s dilemma are two major experimental confirmations of 

these violations. Additionally, violations of the independence axiom of EU theory where 

a probability factor applied to EU-equivalent options affects the choice made by 

individuals are known as the Allais paradox (Allais, 1953). Ellsberg paradoxes, the other 

major violation of rationality happens when the timing of presentation of a third action 

confounds the preference of a first action over a second action. Technically, if 



 

183 

 

 

, ,  and A B G  are actions such that A B  (A is preferred over B), then it follows that 

       ' ( ) ( ) 'SEU A SEU A SEU G SEU B SEU G SEU B     . In experiments this 

was shown to be G order dependent (G was presented to subjects first or not) to human 

DMs - the Ellsberg paradox (Camerer & Weber, 1992).   

Clearly there are perceptual effects that transcend rationality assumptions for 

classical utility theories. Prospect theory as posed in Kahneman & Tversky (1984) 

attempts to take into account these ubiquitous paradoxes by assigning a realistic weight 

function, w  to event probabilities, 
ip   and a value function, v  to actions, as opposed to 

objective utility values, u. The overall prospect value for actions  1 2, ,..., na a a a is 

given as: 

      i i

i

U a w p v a   (4.22) 

The values for w, v, and p are edited in a pre-trial of outcomes before assignment in (3.5). 

In a sense, these edits are training sets akin to artificial neural network (ANN) learning.  

Notwithstanding the work to refine EU-based preferences for actions, subjective 

probabilities remain the anchor for such approaches and hence, the propensity to 

accumulate or perpetuate compound biases.  The manners in which probabilities are 

assigned remain flawed or a more apt generalization to probability seems to be wanting in 

classical decision and game theories. 

 In Schmeidler (1989), measurement of vagueness is introduced and injected into 

the SEU methodology to more aptly handle human tendencies to linguistically smear the 
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precise meaning of certain descriptive expressions when dealing with decision analysis.  

This approach develops the Choquet Expected Utility (CEU) in which global utility is 

defined as: 

    ( ) sU f u f s dvA   (4.23) 

where 
sA  is a general aggregation operator, summing over the domain s. 

sA is normally 

given as the Choquet integral over s. In this case, the Riemann-Stieljes integral is not 

consistent with non-additive measures. Here probabilities, p, are replaced by capacities 

(non-additive probabilities), v, that may not be additive, mirroring some human measures 

and descriptions of imprecise, incomplete, or approximate comparison. Capacities 

describe beliefs. Capacities, v satisfy the conditions: 

1.   0v     

2.    , ,i j i j i ja a a a v a v a       

3.   1v     

Capacities are also known as nonadditive probabilities and are correspondingly more 

general than classical Kolmogorov probabilities. Bayesian prior probabilities can be 

introduced to accommodate experiential information that may add to relevant information 

on decision making. Consider the following multiple priors generalization to CEU: 

       C sU f A A u f dp dv   (4.24) 

where p C is a possible prior probability from a space of priors, C, v is a probabilistic 

belief distribution over C, 
SA and

CA  are aggregate operators over the spaces, S and C 
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respectively, and   is a nonlinear function which measures the amount of aversion to 

ambiguity from the DM. Variational preference versions of (3.7) exist in which 
CA  takes 

on the role of a variational operator (minimization over a space of distributions over S 

with a Lagrange cost function) (Maccheroni, Marinacci, and Rustichini, 2005). 

There is a multitude of manners in which to inject non-classicity into the domain 

of decision and game theories via the EU mechanism.  One such non-classical approach 

is that of fuzziness which may be developed to model vagueness, imprecision, 

incompleteness of information, and linguistic preferences. Fuzziness can be introduced 

into decision spaces via the vagueness, imprecision, incomplete, or incomparability of 

probabilities, utility functions, and preference ordering or combinations thereof (Aliev, 

2013).  One may also consider the fuzzification (as well as the application of more 

general notions of uncertainty measures) of actions and outcomes as will be attempted 

here. We will return to describe these fuzzy decision models after a brief overview of 

generalized fuzzy measures that generate fuzzification of each of these components of 

decision spaces.  

Non-additive probabilities (Choquet capacities),   present with a generalization 

to classical probabilities when fuzziness is considered .  may be sub(super)-additive 

depending on whether (g h) ( ) (g) (h)      . Possibility measures are non-additive 

set functions such that  supi i
i Ii I

h h 


 
 

 
. Possibility measures model inf and sup 

operators for classical probabilities and complete ignorance or lack of information. 
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Through the inf and sup probability operators (generalizations to lower and upper bounds 

for probabilities, the p-boxes), possibility measures generate classical probabilities.  

The dual of a possibility measure,   is a necessity measure, in which 

   1 ch h   , (i.e., if   1h  , a necessary event, then   0ch  , its complement is 

an impossible event) . Fuzzy measures can be expressed as linear combinations of 

possibility and probability measures as in the class of so-called g measures which satisfy 

the additivity definition: 

      1 , 0v v i v i
i I

i Ni I

g h v g h v g h v




 
     

 
   (4.25) 

An even more general notion of fuzzy measure is given by the class of (z)-fuzzy 

measures that incorporate fuzzy number-valued fuzzy measures in order to more 

appropriately model linguistic expressions, imprecision, and imperfect information. Thus, 

a  (z)-fuzzy measure,
z on is a fuzzy number-valued fuzzy set function satisfying the 

following conditions: 

1.   0z     

2.    z zh g   if h g  

3.  limz i z i
i

i I

h h 




 
 

 
 when

1 2 ... ...,  where n ih h h h       

4.  if
1 2 ... ,  where n ih h h h    ,  z n fn h    then  limz i z i

i
i I

h h 




 
 

 
 



 

187 

 

 

Here 
f is a fuzzy infinity where for any real M, (0,1]M  such that 

f M    or 

f M  .
f

 is the -level fuzzy set of
f . 

 Fuzzy measures may then be utilized to fuzzify preference relations, utility 

functions, probabilities, actions, and outcomes. In this manner, fuzzy measures generate 

classes of general fuzzy decision spaces that span the mixture of these fuzzy components 

of a fuzzy decision space (Aliev, 2013).  In order to pursue component fuzzy decision 

spaces, one must first define fuzzy actions, utility functions, preferences, and outcomes. 

We present definitions of these in the appendix for sake of continuity of discussion.  

Choquet aggregation will be the foundation for fuzzy decision spaces.  In Aliev 

(2013) behavioral decision spaces are expressed as combined states of fuzzy and 

possibilistic uncertainty states. We consider fuzzy state spaces of nature, 

 
1,2,...

n

i i N
s


  where 

n
is the space of all fuzzy n-dimensional states of nature. 

Additionally, we model the fuzziness of states of the DM,  f n

ih  and denote the 

space of fuzzy outcomes as a bounded set, n  . Form the combined state space, 

   . Next, we denote by 


, the -algebra of subsets of  and consider the set of 

fuzzy actions,  | :a a    as all


-measurable fuzzy functions from  to . We 

now denote the decision space for DMs under imperfect information by 

 , , ,
i if fD   where 

if
is the linguistic preference relation for a DM agent, i. This 

linguistic preference, 
if
represents a general vagueness of comparison of worth of an 
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action, a, taken under a fuzzy state of nature,  ,w s h , with a certain outcome 

measured,    that a boundedly rational DM agent i, operates under and that defines an 

order for the space of fuzzy utility function values.  . The general fuzzy decision process 

is then the following: find the fuzzy action
fa   such that 

       sup
pf f f f

a

U a A u a s


   (4.26) 

where 
p

A
is an aggregation operator (such as the Choquet fuzzy integral) on the space of 

fuzzy actions,  with respect to the fuzzy measure
p  which is the equivalent to a 

linguistic (natural language-NP) probability distribution over fuzzy states 
fs . 

 Rough set theory has also played a role in developing a framework for decision 

analysis and games with imperfect information. Pawlak (1982, 1994) developed the 

rough set theory in order to structure approximation spaces (lower and upper) to vague 

notions of attributes in information spaces. Later, probabilistic notions were introduced 

into rough sets in order to inject stochasticity into the parameterization of the 

approximation spaces of rough sets (Pawlik, Wong, & Ziarko, 1988). We briefly review 

rough set theory with respect to Bayesian approaches to decision theory from the 

proposals of Yao (2007). They represent a generalization to rough set theoretic notions 

for decision spaces of which we will categorize to include in a more generalized 

uncertainty approach to decision and game theories. 

 The probabilistic rough set theory begins with crisp algebraic rough sets. The 

rough set model is based on a quadruple,  , ,V, ItrU A  where U is a set of objects 
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considered as the universe of discourse, Atr, a set of attributes,  | trV V A   , a set of 

values of those attributes, and  | trI I A   , a set of information maps that assign a 

value to an attribute of an object, (i.e.,  I x V  ).  The description of the object x , 

noted as  desc x , is given by a feature vector in the product space,
trA
V


 , (i.e., 

   1 2desc , v ...,x v ).  Now consider a pair,  , eU , called an approximate space in 

which U is as above and 
e  is a vague equivalence relation defined on U, (i.e.,  

e U U   can be considered as a indiscernable relation for element of U, a vague notion 

of comparing elements of U).  Each 
e  defines a partition of U notated here by | eU  . 

Consider an arbitrary element x U and define the equivalence class subset (granule) of 

U containing x as    | ee
x z U x z   .  The set  

e
x is then considered as the knowable 

description of x. Using our earlier definition,    desc
e

x x .   
e

x defines the 

characteristics of any member of that equivalence set with respect to a feature vector 

profile from 
trA
V


 .   Rough set approximations of a set are then based on the space of 

these equivalence class descriptors in the following manner. For a subset B U and 

approximation space,  , eU , define its lower and upper approximation sets respectively 

as the following unary set-theoretic operators: 

 
    

    

,

,

,

0

|

|

e

e

U e

U
e

B x U x B

B x U x B





  

  
  (4.27) 
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Utilizing these set operators, any superset universe U may then be partitioned into three 

disjoint regions: 

 

   

 
   

           

,

,

, , ,

,

, ,

, ,

,

,

\ \

eU e

e eU e

e e
U U Ue e e

POS

U

BND
U U

c
NEG POS BND

U U

B B

B B B

B U B B U B B





  



 

 



 

  

  (4.28) 

More generally, for a partition  j j J
 


 (index space J) of U, the regions can be 

expressed as: 

 

 

( , ) ( , )

( , ) ( , )

( , ) ( , ) ( , )

,

,

\

POS POS

j

j J

BND BND

j

j J

NEG POS BNDU

   

   

     

 

 

  









 

  (4.29) 

Depending on the logistics of the equivalence relation 
e , one may view these set 

operators as measures of the inside (elements definitely inside B),
 ,U e

POSB


, outside 

(elements definitely outside of B),
 ,U e

NEGB


and those possibly either inside or outside, 
 ,U e

BNDB


of a set B. The last set, the boundary set, 
 ,U e

BNDB


, is the source of uncertainty generated 

from the logistics of the equivalence relation, 
e .  If 

 ,U e

BNDB

  , B is considered to be a 

rough (imprecise) set. Otherwise, B is considered to be a crisp set.  Two types of rules for 

categorizing elements of  
e

x into general partition sets can be developed based on the 

regions: (1) if  
 ,j U e

POS

e
x 


 then 

1c

je
x 



  , and (2) if 
 ,j U e

BND

e
x 


 then 

0 1c

je
x 

 

 , where
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 

 
j e

e

x
c

x


 is a confidence measure. The convergences, 

c

   are convergences in 

probability (confidence). Rule 1 depicts a deterministic one while rule 2 depicts a non-

deterministic (probabilistic) one. 

We next consider probabilistic rough sets using the Bayesian risk framework.  

One can start with a two state category problem (e.g., hypothesis testing) in which the 

states of nature are partitioned in two categories,  , cB B  . This situation may then be 

generalized to the finite (infinite index space J) partition problem, 

    1 2, ,..., n j j J
   


  using pairwise complementation (i.e., 

 \

,  let ,  and \c

j j i

j J j

j J B B U  


      ). Now consider the decision space 

components involved in a rough set setting. Let  1 2 3, ,a a a be the space of actions 

where ai,  i=1,2,3 is the action in picking (classifying) one of the three regions, 

     , , ,
, ,  or 

U U Ue e e

POS BND NEGB B B
  

respectively. Denote by   |i e
R a x  the risk (expected loss) 

associated with taking action ai when  
e

x is considered to be in a partition. A generalized 

risk can be expressed as: 

           ,  | | |A i J i j je e
R a x A l a p x j J     (4.30) 

where  |ij i jl l a  is the loss (function) associated with taking action ai when an 

element is in 
j ,   |j e

p x  is the probability that an element in  
e

x is in 
j , and AJ is 

the generalized aggregation operator over the aggregation index space J and which 
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defines the risk operator RA.  Bayesian minimum-risk decision rules can then be 

developed, 

 

           
 

           
 

           
 

,

,

,

1 2 1 3

2 1 2 3

3 1 3 2

if  and  pick ,

if  and  pick ,

if  and  pick 

| | | |

| | | |

| | | |

U e

U e

U e

POS

A A A Ae e e e

NEG

A A A Ae e e e

BND

A A A Ae e e e

R a x R a x R a x R a x B

R a x R a x R a x R a x B

R a x R a x R a x R a x B







 

 

 

  (4.31) 

Probabilistic approximation sets and regions based on the partition sets can then be given 

as: 

 

   

   

   

( , )

( , )

( , )

,

,

| |

| |

| |

POS

j j e

BND

j j e

NEG

j j e

x U p x

x U p x

x U p x

 

 

 

  

  

  



  

  

  

   (4.32) 

  

 
   

( , ) ( , )

( , ) ( , ) ( , )

,

| |

POS

j j

POS BND
j j j j e

x U p x

   

     

 

    







    
  (4.33) 

Finally, the three rough set regions based on a full partition,  j j J
 


 can be 

expressed: 

 

 

( , ) ( , )

( , ) ( , )

( , ) ( , ) ( , )

,

,

\

POS POS

j

j J

BND BND

j

j J

NEG POS BNDU

   

   

     

 

 

  











  (4.34) 



 

193 

 

 

where 
       

12 32 32 22

31 32 11 12 21 22 31 32

,
l l l l

l l l l l l l l
 

 
 

     
 and W.L.O.G., it is assumed that 

(i) 
11 31 21l l l  , (ii) 

22 32 12l l l   , (iii)      12 32 21 31 31 11 32 22l l l l l l l l     and for 

simplicity that ,  ,  and 1,2,3ij ikl l j k i    . The associated rules can then be expressed 

as: (1) if  
 ,j U e

POS

e
x 


 then 

c

je
x






  , and (2) if 
 ,j U e

BND

e
x 


 then 

c

je
x

 


 

 , where

 

 
j e

e

x
c

x


 is a prior mentioned confidence measure.   

Fuzziness is but one class in a larger family of uncertainty measures that 

transforms a classically structured problem, in our case, a decision (game) space to a 

more general one involving the 3-space spectra of decision-making, (risk, uncertainty, 

ambiguity). We will return to an approach to express and define this family. Before this 

another class of non-classical approaches to decision spaces will be reviewed and framed 

for our situation. 

Recently, approaches from quantum probability have been applied to decision 

theories using both the Everittian many-worlds interpretation (MWI) from Wallace 

(2009) and the more traditional Schrӧdinger wave equation collapse from Busemeyer, 

Wang, & Townsend (2006) , Busemeyer, Wang, & Lambert-Mogiliansky (2009), and La 

Mura (2009).  In the MWI approach, a quantum state   is expressed as the 

superposition: 

 |i i

i

c r    (4.35) 
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where 
ir is the i

th
 decision branch outcome receiving a reward of 

ir .  The universe of 

probabilities still holds, (i.e., 
2

1i

i

c  ) and the quantum weight of the i
th

 branch (future 

self in the i
th

 branch world) is given by the amplitude squared,  
2

i iw r c .  This is also 

the Born rule for the occurrence of a multi-world branch in the MWI. For a game 

strategy,   in a game, G, 

      i i

i

G w r r    (4.36) 

is the quantum utility with the appropriate quantum weights and rewards for the game 

environment. In a naïve rational setting, an agent prefers playing game A to game B if 

   A B  . Denote by 
a

  a preference order for possible games for agent a when in 

quantum state   , (i.e., 
aA B  means game A is preferred to game B by a when in 

quantum state  ). The Born rule theorem then states that there exists a quantum utility, 

   as in (3.19) such that 
a

 is uniquely defined (up to affine transformations on the space 

of games, 
a for agent a) by  . This dictum is the centerpiece of a quantum rational 

decision theory in the face of the MWI and descends from the EU theory.  Using certain 

consistency criteria, which include the concepts of diachronicity and solution continuity, 

to be described more technically below, Wallace (2009) showed that in the case of the 

MWI, the Born rule sets the precedent for a rational quantum behavior.  

Diachronic consistency stipulates that if for MWI descendents, 
ia  of a seed agent, 

a, 
ii a iA B , where

iA precedes A and
iB  precedes B for the seed agent, then for the seed 
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agent a,
aA B . Define a divergence measure, :a a aD    for the space of games,

a  available to play by an agent or society of agents, a. The solution continuity condition 

states that if  ,D A A  and  ,D B B  for sufficiently small 0  , then
aA B

 

when
aA B  . This can be generalized to continuous-valued decision branching 

problems assuming a normed topology in
a .  Nonetheless, there are problems with (i) 

the conditions under Wallace (2009) for which the Born rule applies and (ii) in light of 

behavioral economics and irrationally masked decision processing in humans, the 

violation of order preferences such as transitivity, rationality assumptions cannot be 

made.  

The MWI utilizing the Born rule and interpretation is a deterministic approach to 

quantum mechanics. We now review more traditional quantum probability approaches to 

decision processes. In Pothos & Busemeyer (2009), a quantum decision model 

outperformed a more traditional Bayesian Markov model in predicting the decision 

behavior of individuals participating in two-stage gambling and prisoner’s dilemma 

games – two of the major empirical tests of the existence of widespread violations of the 

STP. In La Mura (2009), quantum probability is used to account for a major variant of 

irrational decision behavior known as the Ellsberg paradox.   In general, most 

information received by real world DM is of the incomplete or uncertain nature. These 

twin perturbations of rational theory dictate that another approach be taken. In order to 

form a more comprehensive framework for games, one must consider a more general 
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theory for decision, relevant in nonclassical settings such as QM, relativity, quantum 

gravity information and irrationality.  

Busemeyer and Bruza (2012) review various contemporary attempts made to 

overlay a quantum probabilistic decision framework for cognitive decision making to 

more adequately model irrationality while simultaneously generalizing the mathematical 

approach using Markov processes. Trueblood & Busemeyer (2012) propose a quantum 

probability model for causal reasoning that can be utilized to describe interference effects 

brought on by irrational decision making.  These models are not intended to propose a 

quantum model for the hardware of the brain. They merely endeavor to more adequately 

predict or describe decision making under uncertainty when irrationality is displayed by 

DMs and within the current context and situation.  Using results from earlier research on 

quantum cognition models from Pothos and Busemeyer (2009), Busemeyer, et al. (2011), 

Aerts (2009), Atmanspacher (2004) and Conte, et al. (2009), they further postulate that (i) 

before measurement , cognition can be described more by a wave than a particle 

manifested through human-induced ambiguity, (ii) current judgments affect the context 

of future judgments, and (iii) quantum logic by generalizing Boolean logic better models 

human judgments that do not obey Boolean constraints, and (iv) to make a current 

judgment, more than past history must be used – present contextual measurements must 

be made to resolve indeterminacy .   

The technical crux of this argument is that in quantum reasoning, (i.e., complex 

human reasoning utilizing wave-interference and indeterminacy before measurement), 

the classical Bayesian probability theoretic requirement that 
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   | |p A B H p B A H  and hence that    | |p H A B p H B A , is violated. 

Quantum probabilities using a Hilbert space, replace classical sample spaces. 

In is in this spirit that this research proposes that a spectrum of (ir)rationality for 

an agent or multi-agent society can be developed from patterns of order preference for 

games. These patterns then define equivalence classes of (ir)rationality within that 

spectrum.  

Game Spaces 

Games are extensions of decision spaces for multiple agents (one agent may be 

represented by nature or a state of a system as in decision theory).  Classical games are 

categorized into three main types: (1) normal form or matrix games, (2) continuous static, 

and (3) differential.  Matrix games depict a finite number of agents engaged in payoffs 

that are awarded after each round of decisions or actions that are taken from finite action 

spaces. Payoffs are represented in cells of a multi-dimensional matrix.  Continuous static 

games have continuous payoff functions with static stratagem.  Differential games are 

governed by differential equation systems (ordinary and partial) that describe the time-

varying dynamics of payoffs and strategies (Vincent & Grantham, 1981).  Multiple 

agents, indexed by I , engaged in games, each execute a stratagem space of actions 

 i i I
A


, so that the strategy space of the game is given by the product space 

i
i I

A A


  in a 

rules-based manner such as sequentially or in an order depicting a ranking.  After each 

round of actions are executed, payoffs  i i I
U u


  are calculated and distributed to each 

agent according to each agent payoff function, ui.  Payoff vectors are utility vectors 
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computed for the agent space.  Hence a matrix game can be depicted as the triplet,

 , , ,G A U I where I is a countable index space for counting game agents. 

The interaction of multiple agents and their respective decision-making strategies 

(stratagem) vastly complicates the straightforward utility calculations in decision spaces. 

Agents endeavor to outguess each other’s strategies and motives.  This epistemic 

phenomena is known as an infinite regress and has been studied as an explicit epistemic 

logical problem subsuming game-theoretic equilibrium concepts (Hu & Kaneko, 2012).  

The more general infinite regress of n agents trying to recursively surmise the strategies 

of other agents we label in this study as n-guessing.  Equilibrium as defined by Nash 

(1951), Hansanyi (1967/1968) endeavors to address the long-term stability of such n-

guessing. Nonetheless, there are countless number of manners in which to form solution 

concepts or concepts of agent optimality in games (i.e., Pareto, minimax, maxmin, Nash, 

Nash -equilibrium, correlated equilibrium, and evolutionary stability).  

Here we review and generalize where adequate, main elements of game theory.  

Let,  
\i j j I i

a a 
 be the game profile strategy without agent i’s strategy. Define mixed 

strategies (stratagem) for an agent i,  i i is S A   as members which are probability 

distributions of pure strategies which are the static actions in Ai played again. The 

stratagem space of a game, 
i

i I
S S


 is then the product space profile for the game agent 

population, I. The Bernoulli-EU utility for a game agent using stratagem  i i I
s s


 is 

defined as: 
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      i i k k

a A k I

U s U a s a
 

    (4.37) 

Def. A stratagem, s Pareto dominates strategy profile g (written  . . s p d g  ) if 

   ,  i ii I U s U g   and     k ,  such that k kI U s U g   . 

 

Def. A stratagem, s is Pareto optimal if there does not exist another stratagem g S  such 

that g p.d. s. 

 

Pareto dominance (preferences) at best, defines a partial order for S since there 

may be multiple Pareto optimums. While Pareto dominance defines a partial ordering for 

game strategy profiles, it is not with respect to individual game agents.  Best responses 

for an individual agent to the other agents’ cumulative strategy define an individual’s 

counter strategy to game subgroups, 

 

Def. A best response of an agent i to the actions of others (a subgroup of agents J I )  

is expressed as a general mixed strategy, ,i ig S such that 

   g , ( , ) , ( , ) ,i i i iU s J i U s s J i s S   where    
 \

, ,l l J i
s J i s J I


  . 

 

We denote this by  b.r. ( , )ig s J i for subsets of agents J I . When J I one obtains the 

usual definition of best response.  
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 Individual best response strategies are not very useful since in general, there exist 

an infinite number of them, except in the case of a unique pure strategy being the best 

response. Instead, the concept of Nash equilibrium is used, 

Def. A strategy profile  i i I
s s


 is a Nash equilibrium for game  , , IG A U if 

,   b.r. i ii I s s  .  If the b.r. is strict then s is a strict Nash equilibrium, otherwise it is a 

weak Nash equilibrium. If a unique Nash equilibrium strategy exists, it is called a Nash 

solution. 

 

 Nash equilibria are considered a measure of stability of a game since rational 

agents are not incentivized to change their long term strategies. Equilibria are shown 

using topological (Brouwer) fix point theory as a means to long-term stability (Nash, 

1951).  Weak Nash equilibria however are less stable since at least one agent can possibly 

become dominate with a strategy change.  Hence weak Nash equilibria can accommodate 

possible rogue groups using other b.r. strategies aside from the Nash equilibrium. Nash 

(1951) showed that in a finite agent and action game there exists at least one Nash 

equilibrium.  However, there is a number of stability equilibrium measures and solution 

concepts for games as previously mentioned based on the goal or preference agenda of 

the agent.  

If an agent is concerned about maximizing their payoff when it may be surmised 

that other agents are playing their respective best response strategies in order to inflict the 

greatest damage or loss to that agent, then the maxmin strategy can be utilized, 
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Def. The maxmin strategy of a agent i is given by:  arg max min ,
ii

i i
ss

U s s



and the maxmin 

value is   max min ,
ii

i i
ss

U s s



. 

If an agent is concerned with minimizing another agent’s maximum payoff 

without regard to theirs, the minmax strategy is employed, 

 

Def. In an n-agent game, the minmax strategy for agent i against agent j i  is the ith 

component in the mixed-strategy profile, js in  arg min max ,
j j

j j
s s

U s s


  with value 

 min max ,
j j

j j
s s

U s s


  for agent j.  This strategy assumes that all agents in  j  are 

likeminded with respect to minimizing agent j’s maximum payoff. 

 

 For the simpler case of a finite, two-agent, zero-sum game; in a Nash equilibrium, 

the all agent payoffs coincide with their respective equal maxmin and minmax values.  

This is von Neumann’s Minimax theorem.  In a finite, two-coalition, zero-sum game, 

where the intra-coalition strategies are stable, a Nash equilibrium represents a stable 

payoff for each coalition equal to both its minmax and maxmin values.  Inception games 

can be viewed (when stable) as two-coalition games and when the space of actions and 

recursions are finite, a Nash equilibrium signals the stability and equality of minmax and 

maxmin inception team payoffs.  It is then crucial to understand when a true inception 
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occurs and what the threshold for the consciousness-aware status of each coalition is as 

this is the proxy value for coalition payoffs in inceptions. 

 The maxmin strategy guides an agent towards optimal  payoffs when their 

adversaries are knowledgeable about best responses.  If instead, an agent wants to  

minimize their maximum regret in their decision (action) against another agent’s actions,  

in the situation where no apriori knowledge of the other agent’s knowledge of strategies 

is known (non-Bayesian) , then the concept of minimax regret is helpful. 

 

Def. Minimax regret decision for an agent i where agents  i  take actions a-i is defined 

by, 

   
*

*arg min max max , ,
i i i i i i

i i i i
a A a A a A

U a a U a a
 

 
  

  
    

 

where Ai is the action space for agent i and A-i is the action space for agents  i .  

  

Note that mixed strategies in a profile si  are linear (expectations) combinations of actions, 

ai and so this definition can translate to mixed strategies without loss of generality. 

 As Pareto dominance defined a partial ordering of dominance among individual 

agent strategies, the concept(s) of (strict, weak, very weak) dominance define an order for 

agent strategies against the strategy profile of all other counterpart agents in a game. 
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Defs. Consider two strategies * and i is s  of an agent i. Then (i) 
is strictly dominates *

is  if

   *,  , ,i i i i i i i is S U s s U s s      , (ii)
is weakly dominates *

is  if ,i is S    

   *, ,i i i i i iU s s U s s   and for at least one    *,  , ,i i i i i i i is S U s s U s s     , and (iii) 
is

very weakly dominates *

is  if    *,  , ,i i i i i i i is S U s s U s s      .  A strategy 
is is strictly 

(weakly, very weakly) dominant if it strictly (weakly, very weakly) dominates all other 

strategies.  A strategy 
is  is strictly (weakly, very weakly) dominant for agent i if it 

strictly (weakly, very weakly) dominates any other strategy *

i is s  for that agent.  A 

strategy
is  is strictly (weakly, very weakly) dominated for an agent i if another strategy

*

is  

strictly (weakly, very weakly) dominates
is . 

 

Nash equilibrium can be generalized based on choosing strategies that are 

correlated with another probability distribution or decision rule. The method of iterated 

removal endeavors to remove in stages, successive dominated strategies by assigning the 

probability of selecting such strategies to 0.  This is a finite stage process as well.  This 

process also preserves Nash equilibrium and hence is a practical methodology of arriving 

at an equilibrium.  When equilibria can be found, these games are called dominance 

solvable games.  Nonetheless, it has been shown in Camerer (2003) and summarized in 

Robinson (2004) that  in real world social settings a limited iteration of removal of 

dominant strategies takes place instead and hence if a rational agent proceeds in their 

thinking with a full iterated removal process, they will inevitably pick a suboptimal 
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strategy.  The average number of (limited) iterations done by agents in games found from 

experimentation was 3.8.  More precisely, real world strategists used types of limited 

thinking strategies that were categorized by 
iL -type agents who process i iterations.  

1L  

agents assume that the opponent uses a naïve uniform distribution for all pure strategies 

and then execute a b.r. strategy.  
2L agents assume their opponent is an

1L agent and so on.  

If we denote by BE

kL that class of agents in 
kL  that act as behavioral economists using the 

strategies that yield the highest payoffs and those that use equilibrium strategies as
E

kL in

kL , then in simple games E BE

k kL L , whereas in complex games BE E

k kL L .   

 

Def. In n-agent game  , ,G A U I , a correlated equilibrium is a tuple  , ,v   , where

 1 2, ,..., nv v v v  is an n-tuple of random variables with associated domains

 1 2, ,..., nD D D D ,  is a joint prob. distribution over v, and  1 2, ,..., n    is a 

vector of mappings :i i iD A  , such that for each agent i, and all possible mappings 

* :i i iD A   we have that, 

             * *

1 1 1 1,..., ,..., .i n n i n n

d D d D

d U d d d U d d     
 

   

 

Again, this definition is generalizable to strategies from actions.  Given a Nash 

equilibrium, a corresponding correlated equilibrium can be constructed.  However, not 

every correlated equilibrium has a corresponding Nash equilibrium.  It is anticipated that 
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the findings of possible Nash equilibria in games structured as inception-like levels of 

deceit and information extraction will illuminate the idea of constructing better decision-

theoretic tools for complex negotiation in situations involving uncertain alliances and 

coalition as exists in many geo-political and national legislative agendas.  Nash 

equilibrium and the spectrum of Nash -equilibria in games translate into situations 

where all game agents are rationally persuaded to not change their respective stratagem 

after some decision stage point in the game evolution, (i.e., no rogue or wildly renegade 

irrational behavior occurs after a specific point in game time).  We next define the 

concept of  -Nash equilibrium in which agents are willing to instigate suboptimal 

strategies (worst than b. r.) if the gains from such equilibrium solutions are only 

minimally better and do not outweigh the resources needed to instigate a b. r..  

 

Def. Let 0  .  The strategy profile  
1,...,i i n

s s


 is an -Nash equilibrium  if for all agents 

i, and all strategies    * *,  , ,i i i i i i i is s U s s U s s     . 

 

 -Nash equilibria always exist and every Nash equilibrium is in a neighborhood (using 

the strategy profile space norm topology) containing  -Nash equilibria.  Nonetheless, the 

existence of  -Nash equilibria does not imply the existence of a nearby Nash 

equilibrium.  From a computational point of view,  -Nash equilibria may represent 

many exactly computed Nash equilibria based on computational error.  If  
is

R  depicts 
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the resource differential between executing an  -Nash equilibrium strategy is  for agent 

i, and a Nash equilibrium strategy N

is , for that agent, then if 

      , ,
i

N N

i i i i i i sU s s U s s R       , it will be more advantageous to execute the -

Nash equilibrium than the Nash equilibrium.  The condition assumes that the resource 

values are somewhat statically calculated and are not taken into account in the calculation 

of the payoff value, (i.e., payoffs are not profits).  In the case where errors in strategy 

execution are likely but small, the concept of perfect equilibrium is germane.  When more 

than one ( - ) Nash equilibrium exists for a game, a Schilling focal point is a ( -) Nash 

equilibrium that is advantageous to others  in some sense, normally has uniformly larger 

payoffs for each agent (payoff dominant) or a smaller maximum loss for each agent (risk 

dominant).  ( -) Coordination games are those in which when two (or more) agents 

choose the same strategy, two or more ( -) Nash equilibrium occur. 

 

Def. A mixed strategy s is a perfect equilibrium (trembling-hand) of a normal-form game 

G if there exists a sequence  
1,2,...i i

S s


 of mixed strategy profiles such that lim n
n

s s


 in 

the strategy profile space norm 
S

, and that for each 
ms S and agent i,   b.r. si m i

s


. 

 

Perfect equilibrium is a stronger condition that Nash equilibrium and indicates a kind of 

robustness against small errors in the judgment or execution of strategies of agents.   

Essentially, if one were to depict a small perturbation, 0  in strategy profiles, then 
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given a perfect equilibrium s, there is a sequence of strategy profiles S  of which a 

member 
is S will be within that perturbation of s, i S

s s   , and additionally, still be 

a best response to any other given strategy 
ms S in that sequence. 

 Evolutionarily stable strategies will be defined next. These strategies are resistant 

to new outside or unknown strategies being introduced to a game and dominating after a 

period of time. 

 

Def. (coalition version) Given a symmetric two-coalition normal-form game given by

  1 2, , ,G C C A U , and 0  , a mixed strategy s is an  -evolutionarily stable strategy 

(EES)  for all other strategies s*, 

     * * *, 1 , 1U s s s U s s s         

We have the following result: if s is an ESS for G, then  ,s s is a Nash equilibrium of G.   

If, on the other hand,  ,s s is a strict Nash equilibrium for G, then s is an EES. 
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Appendix B: Emergent Decision and Game Theories 

Decision sciences have been based on the concept of distance measures so as to 

distinguish between sub-optimal and optimal strategies using risk and utility based 

functions defined on strategy spaces. Classical approaches included Game Theory’s 

minimax and related principles such as minimax regret, Decision Theory’s Bayes and 

Admissibility principles, along with entropy based measures, and hybrids of these. What 

we have learned from our biological partners and the Universe (Nature) is that while 

evolutional processes seem at first sub-optimal, through iterative development they 

progress in increasingly optimal ways. Evolutionary games are specializations of a more 

general system of games, differential games, in which feedback differential systems 

govern the flow of the game. Controls are treated as the strategy functions for the agents 

of the game. In addition to differential games, which deal with continuous spaces of 

strategies and hence, of making decisions on a continuum, stochastic games are based on 

probabilistic systems, but with discrete spaces of strategies and decisions. Hybrids of 

both stochastic and differential games are then approached in which differential systems 

with probabilistic decision strategies control the game process.  

Quantum Mechanics (QM) introduce a new concept of decision reality in that the 

quantum state superposition of pure and mixed strategies and decisions can be treated as 

generalized strategies. QM utilizing more general divergences introduced in the breadth 

section, may explain phenomena more fully than non-dynamic paradigms. QM hence 

draws us into the possibility of utilizing quantum distances (divergences) in developing a 

scheme for quantum decision processes.  
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Humans are imperfect in part because they interpret phenomena in fuzzy 

(imprecise) ways and react with suboptimal strategies. Much research has been done on 

the seemingly distinct way in which chaotic processes can describe natural phenomena in 

the large. Fractals arise from a kind of chaos, producing self-similar structures that 

emulate the shape and growth of most natural scaffolding. If a new decision process 

could simultaneously incorporate the idioms of fuzzy reasoning, evolutionary processes, 

quantum information, and dynamic stochastic systems, including the iterative chaotic 

processes and self-similarity of fractals, would this better explain how we interact with 

nature and each other? Would it be a better predictor of such dances of life or will it 

reveal that indeed probability rules absolutely or at least dominantly in between the 

realms of chaotic processes?  Development of novel techniques for the calculation of 

decision processes using the properties of these emergent systems and their respective 

paradigms of life, inorganic and organic will be attempted by melting aspects of the 

emergent behaviors of quantum, fuzzy, evolutional, dynamic, and iterative complex 

systems, which include as special cases, chaotic and fractal behavior. The various 

components of this generalized game will interact holistically, but will display a fractal 

holonic inner-structure, i.e., one in which a successive “peeling back” of detail of sub-

components will exhibit self-similarity, self-reliance, and meso-level dependence. Holons 

have been described as generic objects of the universe which depict properties of a whole 

and of a part simultaneously (Koestler, 1990). Holonic structures or holarchies are 

therefore the anti-thesis of hierarchies. Holism refers to the functional interconnectedness 

of each holon at every level of interdependence. In addition, generalized divergences, as 
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discussed in the breadth section, may be used instead of more classical metrics to 

measure risk and loss in more general decision spaces, i.e., the quantum realm of states. 

We label this as an “emergent decision landscape”, diagrammatically depicted in Figure 2 

below. The common thread of information and decision flow will continue to be a 

generalized abstract game structure.  

 
Figure 11 - Emergent decision landscape 

 

Dynamic games will be reviewed first, which include differential, stochastic, 

stopping, and evolutionary flavors. Next, the emergent properties of fuzzy and quantum 

systems will be investigated in games. The case for a general chaotic game will also be 

approached. Hybrid games will then be proposed based on these systems. Human 

qualities of heuristics involved in aspects of behavioral game theory and neuroeconomics 

will be discussed briefly in anticipation of more detailed coverage and development in 

the application section.  
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Differential Games 

When the time interval between stages of a multi-stage game decreases in the 

limit, as 0t , then agents must make decisions at each infinitesimal moment. If the 

decision space (strategy space) is continuous, the game changes continuously and the 

strategies can be defined as differential motion. These games evolve into differential 

systems.  

 

Def. In a general differential n-person game between a sequence of n agents
n

iizz 1}{  , 

the dynamics are governed by a system of the form: 

 

),,(
.

zxtf
dt

dx
x   

00 )( xtx   

 

with a payoff (cost) functional, 
'

0

),,())'(,'()(
t

t
iii dtzxthtxtgzR , where Atxt ))'(,'( , 

intersects a set 2RA  for the first time.  

 

Agent i chooses a measurable control function )(tz i with values in some compact 

subset iZ of the Euclidean space ip
R such that )(zRi is minimized. The following 

conditions are also assumed in order to simplify the differential game for the existence of 

equilibrium strategies for (7): 

 

(C1) ),,( zxtf is continuous in the set )(],[ 00 i

m ZRTt   

 

(C2) There exists a non-negative function )(tk defined on ],[ 00 Tt with  
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        
0

0

)(
T

t
dttk , such that |)|1)((|),,(| xtkzxtf  for all      

       )(],[),( 00 i

m ZRTtzt   

 

(C3) For any 0R , there exists a non-negative function )(tkR
defined on  

       ],[ 00 Tt with  
0

0

)(
T

t
R dttk , such that  

       ||)(|),,(),,(|


 xxtkzxtfzxtf R
for all )(],[),( 00 i

m ZRTtzt   

 

(C4) ),( xtg i
is bounded in the set mRTt ],[ 00  

 

(C5) ),,( zxthi is continuous in the set )(],[ 00 i

m ZRTt  for each ni ,...,1  

 

Def. The unique solution )(* tx to (7), under conditions C1-C5 is called the response of the 

system to the agent controls n

iitztz 1})({)(  .  

 

In order to define what an equilibrium strategy would be for (7), we first define a 

sequence of strategies on intervals of ],[ 00 Tt and develop sequences of corresponding 

games. This development will follow that from Friedman (2006). 

 

Let m be any positive integer and let 
m

tT )( 00  define the half-open sub-

interval partition width. Partition ],[ 00 Tt by the subintervals ],( 1 jjj ttI  , where 

 1jj tt , mj ,...,1 . Denote the set of all control functions from the k-th agent that 

are defined on jI by 
k

jZ . Let )(k

jS be maps that carry elements in k

i
mkji

Z
,...,11,...,1 
  to 

elements in 
k

jZ for mj ,...,2 . The vector ))(),...,((()( 1  k

n

kk SSS  is called a lower 

 strategy for agent k. The vector of vector strategies given by 
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))(),...,((()( 1  nSSS  is called the lower  strategy for the differential game (7). 

Now define a corresponding vector of control functions (strategies), ),...,( 1 nzzz  , with 

piecewise components j

kz on the interval jI as: 

 

)(11 kk Sz  , 

                                                     … 

),...,,...,,...,)(( 11

1

11

1

 j

n

j

n

k

j

k

j zzzzSz   

 

 

z is referred to as the outcome of )(S  . The vector of cost or payoff functions can be 

written as ))(),...,(()( 1 zRzRzR n . The game described above that depends on the 

interval width  , is denoted by )(G and the sequence of games by )}({ GG  . G is 

called the differential game associated with the differential system (7). )(S as defined 

above, is called a strategy for the game )(G . Now suppose there exists a subsequence of 

}{ , labeled as }'{ , in which ,0' as m , and in which k

k sS )( in the 

normed space ]),([ 00

1 TtL , where ks is some control function for agent k, and in addition, 

0|)()(|max
00




txtx
Ttt

 , where x is the trajectory corresponding to the controls 

),...,( 1 nsss  and x is that corresponding to z. Then s is an outcome of the strategy. Let 

)]([ SO denote the set of all outcomes of )(S , the outcome set of )(S . The set of all 

vectors ))(),...,(()( 1 sRsRsR n where )]([ SOs is called the payoff (cost) set of )(S

and is denoted by )]([ SR . Let )]([ SRk denote the set of all k-components of vectors in 

)]([ SR .We write this component-wise as )](),...,([)]([ 1  n

kk SSRSR  . Then the 
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expression MSRk )]([  means that for any )]([  SRk , M .  

 

Def. The strategy, S, is a Nash equilibrium strategy of G if the set ][SR is a singleton 

element in nR , and if 

 

)]([)](),...,(),(),(),...,([ 1

*

11  SRSSSSSR k

nkkk

k  , for nk ,...,1  

 

for any other strategy ))(),...,(()( *

1

**  nSSS  of G.  

 

This defines an equilibrium strategy for the game G that corresponds to the 

system (7). In an entirely analogous way, one can define equilibrium strategies for 

different initial conditions in (7). Suppose we consider a different initial condition, 

 )(x , for (7). Let }],{[ 00

mRTt  \D for some exclusion set D. Define the 

following two spaces: )(X is the set of points ))(,( txt where )(tx is any trajectory of (7) 

with the initial condition  )(x , and ),(  , and 

],[}|0:|)({)( 00 TtxXxX  
. Let ),( xtu be a function defined on )(X

such that both u and ux are (1) bounded in )(X , (2) continuous in x for each fixed t, 

and (3) measurable in t for each fix x. ),( xtu is referred to as a continuously differentiable 

pure strategy for agent k in the game G corresponding to the system (7), utilizing the 

initial condition trajectory region )(X . Denote the corresponding strategy set by 

}),(:),({)(  kk SS . Let )),(),...,,((),( 1  nSSS  . Now define the 

Hamiltonian functions: 
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),,(),,(),,,( zxthpzxtgpzxtH iiii   

 

where m

i Rp  and we write ),...,( 1 nppp  . Let 

)],([)),(),...,,((),( 1  SRVVV n  . In addition to the smoothness conditions 

placed on ),( xtu above, let ),( xtu also be Lipschitz continuous in ).,( xt Now consider a 

new system of equations related to (7), the Hamilton-Jacobi equations of the differential 

game G,  

 

0)),,(,,( 



VxtuxtH

t

V
xk

k , in )(X , for nk ,...,1  

 

subject to the condition kk gV  on )( XD . 

 

Def. Let functions ),,( iii pxtuu   for ni ,...,1 , where 

)),,(),...,,,((),,( 11 nn pxtupxtupxtu   satisfy the following condition: 

 

)),,(,,(),,(),...,,,(,),,,(),...,,,(,,(min 11

*

1111*
pxtuxtHpxtupxtuupxtupxtuxtH inniiiiii

ui



 

 

Then u is called a feedback control.  

 

Theorem. If in (9) above, u is a feedback control and are continuously differentiable in 

)(X  and V is a twice continuously differentiable solution of (9), then 

)),(),...,,((),( 1  nSSS  is a Nash equilibrium for any ),(   (Friedman, 2006, 

p.293). 

 

Strategies corresponding to the solutions of the Hamilton-Jacobi equations of a 
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differential game are then the Nash equilibrium strategy of that differential game. 

Numerical methods exist in finding solutions to the Hamilton-Jacobi equations under 

certain conditions, as outlined above and when such feedback controls exist. Feedback 

systems that tend to harness a system or game back into a realm of strategies or 

equilibrium that it began with are negative equilibrating feedback controls. Those that 

tend to change the regime of game equilibrium strategies from its initial configuration are 

called positive equilibrating controls or deviation amplifying feedback. 

Stochastic Games 

The first result on stochastic games was the work of Shapley in 1953 (Shapley, 

1953b). The idea was to generalize a stochastic game to include a discounted factor, 

)1,0( in the description of the value of the game. Stochastic games are special 

versions of multi-stage games in which the dynamics of the game change from one move 

or stage to another. These games can occupy finitely many states, Ss , where || S is 

a finite set of state indices. In more general cases, S may be denumerable or continuous 

and the number of agents may be countably infinite. Fink generalized the results of 

Shapley to n-agent games with countably many states, while Rieder generalized them to 

the case of countably many states (Fink, 1964; Rieder, 1979; Ummels, 2000). First, some 

notation and a definition of the general stochastic game: 

 

Def. Let X and Y be Borel spaces. A stochastic kernel on X given Y is a function .)|(.P

such that: (a) )|(. yP is a probability measure on X for each fixed Yy , and (b) .)|(WP
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is a measurable function on Y for each fixed ( )W X , the Borel σ-algebra of X. The set 

of all stochastic kernels on X given Y is denoted by )|( YX . Let )(X denote the set of 

all probability measures on X. 

 

Def: A stochastic game is described as: 

 TQRASG iiii ,,),,(,,:    

where: (1)  n,...,1  is the set of agents, (2)  is the state space, a Borel space, and 

(3) for each i , (a) iA is a Borel subset of some Polish space (complete, separable, 

metric space) (and hence is also a Borel space) and is the set of actions for agent i, (b) 

ii A : is a multi-function defined for each s such that )(si is the set of feasible 

actions for agent i at state s, (c) ::iR is a bounded measureable function that 

denotes the reward or negative loss of agent i given the state s and the action vector 

 sa  and where 











)()(,);,(
1

ssasas i

n

i
 , (d)  0,1i  is agent i’s 

discount factor, (e) Q is a stochastic kernel in )|( P which specifies the game state 

transitions, and (f)    ,...,2,1,0T denotes the horizon or time length of the game 

(Dutta & Sundaram, 1997). Finally, let  sM i denote the set of mixed actions (probability 

mixtures of actions) available to agent i when the game, SG, is in the state s and let

   sMsM i

n

i 1
 be the composite space of mixed actions for all agents when SG is in 

state s. 
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At a particular state s, the agents of the game must play a regular game defined as

);,...()( 1 saarsR n . Transition probabilities, )|(),...,,|'( 1 Paassp n   are used to 

determine what state, 's , the game will enter given that the agents use the actions 

),...( 1 naa respectively on the next move, and the current state of the game is s . Generally, 

these transition probabilities will be determined by the complete past history of the game 

up until the current state. To this end, define the following: 

 

Def. A t-history ,
th , of a game is a full description of the evolution (all previous states 

and action vectors) of a game up to time t, (i.e., 
0 0 1 1( , ,..., , , )t t t th s a s a s  ). Note that 

th

contains the current time state of the game, 
ts . Let  t tH h denote the set of all possible 

t-histories of the stochastic game SG for a given time t. For a given time t and t-history, 

th ,  ts h will be the state that results from the realization of 
th . 

 

Markov processes and stationary strategies are often used instead to simplify the 

model. In a Markov stationary process, p is independent of time and any previous state 

and agent action vector. These are sometimes referred to as memory-less games. Let 

)(tRi denote the random variable (measureable function) representing the payoff to agent 

i from all other agents at stage t of the game. The expected value of )(tRi , given the 

action vector ),...( 1 naaa  and current state s, )]([),( tRE isa , is well defined for each agent 

i.  We give the definition of a discounted payoff and stochastic game, 
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Def. The  -discounted stochastic game, denoted by  , for 0 1  , has a payoff 

determined by (Connell, et al., 1999): 

 

       1

,
1

,i m

ia s
m

v a s t E R t 






      (4.38) 

 

Def. If         supinf , inf sup ,
i i

i i

i i i

s
a aa a

v t v a s t v a s t 
 

   for each agent i, then the value 

of  at time t is   i

sv t . The optimal strategy vector (profile) for the n agents, 

 * * *

1 ,..., na a a  at time t satisfies: 

 

           * * * * *

1 1 1 1 1 1
inf ,..., , , , , , , sup ,..., , , , , , ,

i
i

i i i

s i i i n i i i n
a a

v t v a a a a a s t v a a a a a s t
 




   
    (4.39) 

for each agent i.  

 

For the vector of states that a game progresses through, the vector Ss

i

sv )]([  is the 

value vector of  . Shapley proved that both   i

s s S
v t


   and *a  exist. Of interest is the 

behavior of  as 1 , (i.e., the asymptotically non-discounted stochastic game). In 

this limiting case, one can re-define the payoff determinant (4.38) as: 

 

      ,
1

1
liminfi

ia s
m

v t E R t
 





 
     

 
   (4.40) 

                                          

Mertens and Neyman (1981) proved that for this limiting average stochastic game, an 

optimal strategy and value  i

s S
v t 
   , *a , both exist. More general stochastic games, 

such as n-person zero-sum  -discounted stochastic games with denumerable state spaces 
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have been studied in which public signals (information vectors with relevant game 

information) given by a uniformly distributed sequence }{ n , known to all agents,  can 

be taken advantage of. These so-called correlated games can possess Nash equilibria and 

are said to have correlated equilibria under certain stochastic conditions (Nowak & 

Szajowski, 1999).  

 Time-discounted games are defined as discounted games where the discount 

factor is replaced by a function of time t.  Hyperbolic time-discounted functions have 

become more popular than the initial use of exponential discounts because the former 

more accurately emulate the economic behavior of humans who reason that discounts 

increase less with at time periods that are closer to the present time when generally 

applied to time delays of rewards.  These time-discounted functions take the form, 

  
1

1
Hf T

kT



  (4.41) 

where T is the time delay from time 0 until payoff and k is a static damping factor.  Read 

(2001) has shown in experimental tests that time-discounted factors are subadditive and 

do not increase with time, but rather are more dependent on the length of subdivided time 

intervals.  In a general stochastic game with a subadditive time discount one has, 

   
   

 

,

,
0

1

, lim
1

ia si

k r rt
m

E R t
v a s t

k t



 


  


 
   (4.42) 

where 0 1r  , k and is an empirical non-linear time perception factor and t is the time 

interval between payoffs.  The corresponding limiting average case can be expressed as, 
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  
   

 

,

0
1

1
lim liminf

1

ia si

st
m

E R t
v t

k t


 



 


    
  

   
   (4.43) 

with optimal strategy  i

s S
v t 
   and value *a .   

Stopping Games 

Stopping games are another breed of stochastic game in which the strategy rules 

are based on optimal stopping times for stochastic processes. This discussion will center 

on the original proposal from Dynkin (1969).  Here we let 
n

nnX 1}{  be a finite stochastic 

sequence defined on a fixed probability space ),,( PF . Let ),...,,( 10 nn XXXF  be the 

 -field generated by 
n

nnX 1}{  . Define the random variable )( to be a Markov time 

with respect to the family }{ nFF  ,


 }{NNn .  takes on values in 


N and 

nFn  })(:{  for each 


Nn . )( is then a stopping time (finite Markov time) if 

1}))(({ P , i.e., if a stopping time exists in probability. Strategies in stopping 

games are the stopping times. Here 
i

n

i
a

l XaR
1

)(



 where i
ni

i

n

i
aa

,...,11
min


 , defines the 

payoff for agent l from all other agents in the game. Under certain regularity conditions, 

the value and optimal strategies exist for stopping games. In particular, under a payoff 

function of the form: 

}max{}{}min{)(
ilillill aanaaaaaal IYIWIXaR    

 

where 
n

nnY 1}{  is another stochastic sequence measurable with respect to some increasing 
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sequence in F and such that
nn YX  for each n , the existence of a game value and 

optimal strategies has been shown (Yasuda, 1985). 

Evolutionary Games 

Darwinian dynamics, the term used by evolutionary mathematicians to describe 

the processes that underlie natural selection, is a system of differential equations that 

endeavor to satisfy Darwin’s conditions for evolution, including those of variability, 

heritability, reproduction, and survival. This evolutional process can be framed into a 

game, the evolutionary game. Unlike classical game theory where the emphasis is on the 

agent as a dynamical entity, the evolutionary game puts more importance in its 

framework on the evolution of strategies of species (agent groups). Agent groups come 

and go, but strategies of those groups dynamically change, based on the most simple 

dictums of evolution: (1) like tends to beget like, with heritable variation in between 

generations, (2) in a species of organisms, the prime operator is survival, and (3) heritable 

traits or the phenotype of the species influences the survival techniques imposed (Vincent 

& Brown, 2005). In an evolutionary game, two dynamics are in play simultaneously, 

population and strategies. Both these spaces can be described by a fitness function, 

generated by a kernel or a generating function. This is the most general form for a fitness 

function in that both population growth (decline) and strategy spaces can be realized by 

two separate instances of a single generating or G-function, as it has been labeled 

(Vincent & Brown, 2005). Game strategies in an evolutionary game are the species’ 

phenotype, the characteristics trait of that group of organisms. Hence, within the same 
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population group, the evolutionary trait is to have one G-function describe the strategies 

for each member of that group. G-functions will then describe the game strategies for a 

single pack of organisms. The same may be said for the population dynamic of that 

group.  

Consider now the situation where groups of agents participating in a game are 

linked by common characteristics. In evolution, these may be a genotype, phenotype, or 

social dynamics, such as culture, religion, or nationalism. Blind evolution does not take 

into account adaptive learning. Learned evolution should incorporate an adaptive 

component. For our purposes, we review an evolutionary model that has stochastic 

components and a differential component that mimic the evolutionary trait. Strategy 

spaces for differential and evolutionary games are continuous. Species j adapts a 

stratagem that is denoted by the random variable )(tx j at time t. Let 

)),((),( txREtx jj j
  denote the expected payoff with respect to )(jj GG  , the 

parametric distribution of strategies for that species. The evolutional rule is that a species 

will gravitate to strategies that will tend to produce larger values of  . In this regard, the 

tendency will be to pick a strategy that is in the direction of higher derivatives of  over 

time (Goercee & Holt, 1999). Since a certain amount of genetic or reproductive noise is 

present in every evolutionary process, a stochastic term must be added to this dynamic. 

Let jf and
'

jf be the population density and its time derivative respectively of species j. 

Consider the diffusion process described by the stochastic differential equation (SDE): 
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),(),(),(
),(

' txftxftx
t

txG
jj

j
 




 

 

This SDE is the Fokker-Planck equation from statistical physics. It has been derived for a 

very general noisy evolutionary process (Anderson, Goeree, & Holt, 1999). Other 

evolutionary systems involve dynamicism in the population and strategy spaces. 

Differential systems are given that express rate of change with respect to population 

density and strategy.  

 

Def. A general dynamical system for an evolutionary game can be written in the form: 

),,(
.

yxsHxx iii   

),,(
.

yxsNyy iii
  

 

where ),...,( 1 jnxxx  , ),...,( 1 jnyyy  , and ),...,( 1 jnsss  are the population densities 

utilizing a strategy, the resources used, and the actual strategies respectively for the 

species j. Additionally, among the population of species j, there are ix individuals who 

will utilize strategy is . ),,( yxsH i is a functional that describes the dynamics of the 

fitness of the evolutionary process. H replaces the concept of utility from classical games.

),,( yxsN i describes the dynamics of resource utilization (Vincent & Brown, 2005, p.97). 

Each is in itself may be a vector of strategies available to the ix individuals utilizing them 

within the species j population, i.e., ),...,( 1 iinii sss  . In this case, one can derive the 

mean strategy for sub-population ix . The different strategies employed within the same 

group of individuals contained in the species can be viewed as a phenotype. Note that 
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time is not considered a differential in (5). The game defined by this dynamic system is 

given by . To find a non-zero equilibrium solution for (5), involves either solving the 

system of equations 

 

0),,( yxsH i
, for jni ,...,1  

 

or choosing an initial condition )0(x and iterate the corresponding difference equations 

until a convergence to a solution is reached. In order to further generalize the form (5) for 

a dynamic evolutionary process or game, we define a vector of fitness generating 

functions, jn

iiGG 1)(  , for each species j, as follows: 

 

),,(|),,,( yxsHyxsvG isvi j
 , for jni ,...,1  

 

where v acts as a variable holder for the species. This is known as a G-function and is 

isomorphic to the defining fitness function H via the relation (6). v is also known as a 

virtual strategy. Predator-prey and other more generalized competitive models of co-

evolution can be described by this form. Let 



n

i

ixN
1

denote the total population size of 

all species in the evolutionary game and define 
N

x
p i

i  to be the strategy frequency for 

sub-population ix . We can then use the vector nppp ,...,( 1 ) and N to re-define Gi, as

),,,( NpsvGi .  

 

Definition Evolutionary games are density dependent if: 
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0
),,,(






N

NpsvGi  

or frequency dependent if:  

 

0
),,,(






i

i

p

NpsvG
, for jni ,...,1  

 

Evolutionary games may possess a special type of equilibrium in which a genotype 

depicted by a mixed strategy based on the probabilistic mixture of ),...,( 1 iinii sss  is 

stabilized in the sense that another genotype mutant js is not able to evolutionarily invade 

and assimilate it out. The fitness generating function G determines the expected fitness of 

a species when the given virtual strategy v is employed by that species (Vincent & 

Brown, 2005, p.79). The differential system (5) may now by re-written in terms of the 

fitness generating function as: 

iuvii yxuvGxx  |),,,(
.

 

),,( yxuNyi   

Each species may have a vector of strategies u and resources y, with vector resource 

function ],...,,[ 21 ynNNNN  , where ny depicts the number of resources available to the 

species populations. Notation for all the above expressions will be in vector notation for 

u, p, y, and N. The more general setting is when an environment contains multiple species 

with multiple fitness landscapes. In this case there will exist multiple G fitness generating 

functions indexed by i. For us to express this multiple species buildup, we use the 

following notation: let ri be the number of species given by adding each successive 

species population together. This can be expressed as the sum: 
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s

i

j

si nnr
j


1

for gni ,...,1  

where ns is the total number of species in the environment. 

 

Def. If ),...,( **

1

*

nxxx  is an equilibrium solution to an evolutionary system, and 

),...,( **

1

*

nsss is the corresponding mixed strategy vector then 
*s is an evolutionarily stable 

strategy (ESS) for  if for any strategy,
*ss   (corresponding to a mutant competitor),  

 

)),,(),,((),,()1(),,( ****

0

** yxxssGpyxsGpHyxsG iiiii   

),,(),),,(()1(),,( *

0 yxsGpyxssGpHyxsG iiii    

 

then either 

 

),),,((),,( *** yxssGyxsG iiii   

 

or 

 

),),,((),,( *** yxssGyxsG iiii   and ),,()),,(),,(( ** yxsGyxxssG iiiiii    

 

An evolutionarily stable strategy
*s , then either satisfies (1) the population ix playing 

*

is

does better playing against the coalition ix  playing 
*

is  than any other mutant in the 

coalition does playing against 
*

ix , playing 
*

is  or (2) some mutant does just as well 

playing against x using 
*s , but ix using 

*

is does better playing against the mutant coalition 

ix  using 
*

is  than any mutant in the coalition does against that mutant coalition. 

General Dynamic Games 

Deterministic, evolutionary, and stochastic differential games have been 
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investigated in the prior sections. In this portion of the depth component we review 

general systems of dynamic games or games that involve a mechanism that is a general 

dynamical system. For stochastic dynamic games, the system may incorporate 

stochasticity in various ways, as in the involvement of a (Itô) stochastic PDE as the game 

control equation. 

A dynamic system is a pair ( , )tM  such that M is a manifold of phase states and

t is a time evolution operator, :t M M  , and that depends on time t T , for some 

time index space, and is smooth, i.e., 

k

t

kt

 


exists and is continuous for a sufficient 

number of k  . One can view
t as modeling or describing the evolution of a state 

space and hence an alternate definition of a dynamic system is a triple ( , , )S T R  where S 

is a space of states, T is a time index space, and R is a rule for mapping S into itself at 

different times. When , , ,  and T   , the system is called a flow, semi-flow, 

cascade map, or semi-cascade map respectively. Normally, in applications, 
t is the 

solution to a system of equations, such as: ( , ) 0H x x  , where x(t) is a trajectory in M and

x is the usually time differential of x. An initial condition will also be given and can be 

inherent in the equation ( , ) 0H x x  . A general dynamic game can then be defined as a 

(stochastic) dynamic system in which a constraint condition [ ( )]C P x , is imposed on a 

payoff functional, P(x). As in the description of a differential game, the game’s response 

to the system is represented by one component of the trajectory x(t). Other control 

mechanisms (for each agent and other possible non-agents) can be represented by other 
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components of the trajectory. The dynamics of the game system are then governed 

entirely by the quad-tuple ( , , , )M H P C . 

In the stochastic case, H will involve probability measures, as well as stochastic 

processes, such as Markov or Brownian processes. Generalized stochastic differentials 

may involve Itô partial derivatives or another defined stochastic derivative. In the 

deterministic case, if ( , ) ( )H x x x v x  and ( )v x Ax b  , i.e., is linear, then nM R , 

i.e., M is isomorphic to an n-dimensional Euclidean space. v is called the vector flow 

field. If 0nA  (n x n zero matrix) and 0b  then the trivial solution for the evolution 

operator is ( )t x x bt   . When 0b  and 0nA  then 0 0( ) tA

t x x e  at the initial point 

0x and, ( )t x is generally determined by the eigenspectrum of A. In this case, the 

eigenbasis and eigenspectrum determine the stability of the solutions, i.e., whether they 

converge or diverge away from an equilibrium point at the origin. For two different initial 

conditions, 
1

0x and
2

0x , 1 2

0 0( ), ( )t td x x   may converge or diverge (exponentially 

sometimes) depending on the eigenstructure of A. For a general dynamic system, (H,M), 

the possibilities are infinite. There are “typical” systems that have been generalized, the 

so-called structurally stable (Morse-Smale) dynamic systems that lead to typical 

behaviors. Here “typical” will pictorially mean that in a phase portrait (the map of 

( (0))t x in the ( , )-spacex x as t changes), the trajectory will have one of four patterns, (1) 

source, (2) sink, (3) limit cycle (stable and unstable), or (4) saddle. Quasi-periodic 

behavior is a combination of periodic behaviors with differing frequencies, as in internal 

movement in a torus. It usually acts as an intermediate behavior between two typical 
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behaviors in a trajectory’s life. In a generalization of a result from Poincare and 

Bendixson, Smale showed that structurally stable dynamic systems lead to combinations 

of the typical behaviors (Smale, 1963). Structural stable is a global stability measure that 

essentially means that there exist a mapping that preserves orientation, differentiability, 

and topological invariance between two orbit trajectories (orbits) of two different 

evolution operators defining two nearby (both in a neighborhood of M) dynamic systems 

respectively. In a general dynamic game, the payoff constraint, [ ( )]C P x , may then define 

a general region (closed, bounded, convex, etc) in M. The range of the evolution, ( )tR  , 

must then satisfy this constraint system C, i.e., the statement  ( )tC P x    must be true. 

Chaos is a particular type of dynamic systems behavior. Usually the term chaotic 

has meaning in terms of unpredictability of the long-term behavior of a dynamic system. 

Chaotic behavior can be exhibited in deterministic or stochastic systems that are linear or 

non-linear. It may also display itself in very simple iterative mappings such as the logistic 

function as the defining rule in a system. Therein has laid the recent popularity of chaos. 

More precisely, a dynamical system ( , )tM  is chaotic (dissipative dynamic) if: 

(1) ( , )tM  is sensitive to initial conditions, i.e., 1 2

0 0( ), ( )t t
t

d x x     for two 

different initial points,
1

0x and
2

0x where  1 2

0 0,d x x is arbitrarily small at some 

instant, 

(2) ( , )tM  is topological mixing, i.e.,  a non-negative integer , such thatN

n N  , and all pairs of open subsets in M, ,A B M , ( )t A B  , and 
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(3) the set of periodic trajectories (orbits) of ( , )tM  is dense in ( )C M  , i.e., any 

periodic orbit in ( , )tM  can be arbitrarily approximated well by a different 

periodic orbit of ( , )tM  . 

Attractors of M are subsets or regions in the phase space where trajectories that are 

sufficiently close to them are drawn into or converge into eventually in time. More 

precisely, A is an attractor of ( , )tM  if: 

(1) A is invariant with respect to
t , i.e., if  at some instant sx A t , then 

( )  s

t x A t T    , 

(2)  a non-empty neighborhood of ,  ( ),A B A the basin of attraction for A, defined 

as 

 
 neighborhood

of 

( ) phase space of (M, ) :   ( )  s N t N
N

A

B A x t T x A t t          , 

and 

(3) no subset of A satisfies (1) and (2), i.e., B(A) is the smallest neighborhood of A 

satisfying conditions (1) and (2). 

A “sufficiently hard to describe” attractor set A is called a strange attractor. Two simple 

attractors are the fixed point (sink) and limit cycle sets. However, there may be attractors 

that are wildly formed and hence the name strange attractor. One of these is a fractal set. 

Fractals are sets which exhibit self-similarity and fractional Hausdorff dimension, a 

generalization to physical space dimension. Self-similarity is the property where as one 

“drills down” with more detail, the shape of the boundaries of the set are similar or 
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identical to the shape of the higher , a view of that boundary. Popular examples of natural 

fractal sets are coastlines, ferns, tree limbs, and cloud structures. Formally, an attractor A 

is strange if (1) A has fractional Hausdorff dimension, and (2) ( , )tM  is chaotic when 

restricted to A.  

Note that in our ongoing discussion on dynamic systems, no section is directly 

dependent on the system being deterministic or stochastic, so long as the derivatives and 

time differentials involved exist. Chaos can arise from simple linear deterministic 

systems or be absent from complex non-linear stochastic systems. Chaotic games can 

then be formed from a dynamic game that involves a chaotic dynamic system, 

independent of the payoff constraint structure. Here we may then define a general fractal 

game.  

 

Def. A game f  is a fractal game if its dynamics are controlled by a (stochastic or 

deterministic) dynamic system ( , , , )M H P C in which a strange attractor A exists. 

 

If t

 can be parameterized by such that the properties of ( , )tM  change dramatically 

at some value 
0  , say stable to unstable, typical to chaotic, change structures 

entirely, or merge into a combination of structures, then the behavior of ( , )tM  is said 

to bifurcate at 
0  , a bifurcation point of ( , )tM  . Ergodic properties of ( , )tM 

may also be investigated. A dynamic system defined on a probability space 
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( , , )M M   , is said to be ergodic if the time average and space average are equal 

with respect to ergodic transformations T on M . T is an ergodic transformation on

( , )tM   if A  and 1( ( )) ( )T A A   imply ( ) 0 or 1A  . 

Formally, this means: 

  
1

1
lim ( ) ( )

n
k

t t
n

k x

T x x d
n






 
   

 
  . 

We can define a corresponding operator, :tU  and maps a, called observables that 

assign physical attributes (numbers) to points in the phase space, such that 

( ) ( )t tU a x a x  . This maps a non-linear finite-dimensional dynamic system ( , )tM   to 

an infinite-dimensional linear system  , tU . Ergodic properties of ( , )tM   can then be 

studied from the spectral properties of 
tU . In particular, it has been shown that there 

exists an absolutely continuous measure
SRB defined on a probability space, 

( , , )M M   such that in a chaotic dynamic system, ( , )tM   , restricted to an attractor 

A, is ergodic (Ruelle, 1976). Chaotic games defined on a probability space M will then 

exhibit ergodicity in attractors that have non-empty intersection with the set

  ; ( )  is truetx C P x   . 

Fuzzy Games 

Fuzzy games are modeled using the notions of fuzzy sets introduced by Zadeh 

(1965). Fuzzy games were originally developed by Butnariu, with later revisions and 
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modifications by Billot (Butnariu, 1978) (Billot, 1992). In Butnariu-Billot models, 

fuzziness is introduced through the beliefs or attitudes that an agent may possess about 

the actions or strategies of other agents. This psychological game can be modeled through 

constraints imposed on the strategy spaces available to the agents. Equilibriums may exist 

when common beliefs among the agents are shared. Fuzzy games in which both payoffs 

and strategies are fuzzy were developed for noncooperative settings by Aristodou and 

Sarangi in an attempt to generalize the decision framework of Bellman and Zadeh 

(Aristodou & Sarangi, 2005). An n-person non-cooperative fuzzy game in normal form in 

which only strategy space is fuzzified will be defined first.  

 

Def. Let 
n

iiii WS 1),,(  where the set of agents is represented by },...,1{ nI  and for 

each agent i: 

  

(1) iS is the set of pure strategies available,  

(2) i

i

n

i

i W ),...,( 1  are weights assigned such that the weight 
m

i is agent i's  

preference for the m-th pure strategy in iS ,a strategic arrangement. The vector 

i
Ii

n WW

 ),...,( 1  is called a strategic choice for the game ,  

 

(3) 
W

i 2 and for all W , )( i is the possibility assigned by agent i to the  

strategic choice . )( i is also the membership function that assigns a  

membership value to each mixed strategy utilized by agent i, and  
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(4) letting j
ij

i WW


  and i

W

i WW i  2 , i

ii

fi WwAs  ),( is agent i's strategic  

concept in  , where })(:{ fxXxA iA

i

f   is the usual  - cut of the fuzzy 

set
iA  (Saranji, 2000, p.101).  

 

In addition to the above four conditions,  should also satisfy the fifth following 

condition: 

 

(5) if iYi

fA  2 and 0i

fA , then 0)( i

fi A . 

 

This condition means that there exists a strategy ii Ws  such that 0))(( ii

fi wA , i.e., 

each agent possesses, at least, one non-trivial strategy to play in the game.  

 

Def. The vector ),...,( 1 nsss  is called a play in . Denote the set of all possible plays in 

 by S. 

 

Def.  For two strategies available to one agent, iii Sss 21 , , 
1

is is strictly better or is a 

strictly better strategic conception than 
2

is for agent i if and only if 

))(())(( 2211 wAwA fifi   . We denote this by 
21

ii ss  .  

 

This is a fuzzy version of dominance within the class of strategies for an agent in a 

classic game.  

 

Def. For dominance of plays or strategy profiles, we say that for two plays Sss 21 , ,
1s

is socially preferable to
2

is if and only if for all Ii , ))(())(( 2211 wAwA fifi   . We 
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denote this by
21 ss  .  

 

Def. A possible solution s, of the game  satisfies the following: for any other play 
*s , 

the condition ssi 
*

cannot be true, that is, for all Ii , ))(())(( ** wAwA fi

ii

fi   . 

 

Def. A play ),( *** wAs f is called a play with perfect information when it is of the form: 

 

1),...,,,...,)(( **)1(*)1(*1*  nii

f wA  , if 
*jj   where ij   

                              ,0   otherwise 

 

An alternative and equivalent condition to this is that 
** i

f

i A for all Ii , the mutual 

consistency condition on beliefs on all agents. 

 

Def. An equilibrium strategy of the game  is a possible solution ),( ** ii

fAs  that 

satisfies the mutual consistency condition on beliefs on all agents Ii . 

Now consider an n-person non-cooperative fuzzy game in which both payoffs and 

strategies are fuzzified. We follow the work of Aristodou & Sarangi (Aristodou & 

Sarangi, 2005). We frame a game with fuzzy strategies and payoffs as: 

 

Def. Let ),,,(  Sf where the set of agents is represented by },...,1{ nI  and for 

each agent i: iS is its strategy space and :i S  is its payoff function. Here
1

n

i
i

S S


  is 

the space of all strategy profiles.  : 0,1i iS  defines an agent's "perception constraint", 

i.e., fuzzy belief constraint on the strategies of others and hence a constraint on their own 
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strategies.  : 0,1i iS  defines an agent's "aspiration level", i.e., fuzzy goal function that 

can capture the agent's alternative to utility maximization such as in altruistic behavior. 

 

Def. Agent i's decision set is given by  ( ) min ( ), ( )i i i i is s s   , i.e., is the intersection 

of the set of goals and the constraints. 

 

Def. A strategy tuple  * * *

1 ,..., ns s s is a Nash equilibrium in f if for all i I , we have 

* ' *( ) ( , )i i i is s s   for all '

i is S . 

 

In the proceeding discussion, we assume that 
iS is compact and convex and the payoffs 

are continuous for all i I . 

 

Theorem. In a fuzzy game, ),,,(  Sf , if 
i is non-empty, continuous and strictly 

quasi-convex in an agent's own strategies, then f has at least one Nash equilibrium. 

 

Proposition. Let  imax  min  ( ) max  min  ( ),min  ( )
j j j ji i i i

i i i i j
s S s Ss S s S

C s s s  
  

  , with the α-cut of 

iS defined as  
0

0: ( )i i i i iS s S s     and  0 0( ) : min  ( )
j j

i i i i i
s S

S s S s S  


    . Then 

if 0( ) 0iS   and 
0

0( ) 0i iS S   , then 0iC  . 
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Corollary. Let f be a one-sum game, i.e., ( ) 1 ( )i js s   for i j . Let 
i be non-empty, 

continuous, and strictly quasi-concave in an agent's own strategies. If
0iC  , then it is 

also a Nash equilibrium of f . 

In pre-play communication agents may confer before the start of the fuzzy game. 

In this case, if this communication leads to a better knowledge of what strategies to use, 

the pre-play strategies will be contained in the non-pre-play strategies of an agent, i.e., 

'

i iS S , where '

iS is the pre-play strategy set for agent i. By the definition of 
iC , '

i iC C

and hence a better possibility for coordination. This is not generally true in a classical 

game. 

Quantum Games 

The revolution that was started by the advent of Quantum Mechanics in 

describing the probabilistic behavior of sub-particles in the universe, also gave a new 

meaning to the concepts of information and entropy. Game theory uses the concepts of 

information theory in order to describe distances between targeted strategies, i.e., good 

strategies and sub-optimal strategies. Payoff functions can be described by information 

distance metrics that measure the reward or penalty for reaching certain plateaus in 

performance. Mixed or randomized strategies can be viewed from the lens of quantum 

super-positions of strategies. When one agent chooses a strategy, it is effectively 

communicating information to the rest of the agents of the game. This information is at 

its root, quantum in nature. So, quantum entanglement may connect one agent's choice of 

stratagem with all others, in a non-trivial fashion. Already, games have been devised 
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wherein a spin-flipping game (a quantum variant of the penny flipping game), a quantum 

strategy will always beat the best classical strategies (Meyer, 1999). It was recently 

conjectured that in a non-zero sum game, quantum strategies can be constructed that will 

always give rewards when played against any classical strategy (Eisert, Wilkens, 

Lewenstein, 1999). However, it was pointed out in a comment to this claim that an agent 

must have its strategy choice mechanism extended to include picking probabilistic 

choices (Benjamin & Hayden, 2000), rather than just completely positive maps. Quantum 

entanglement can also be introduced through the payoff functions. We shall set up the 

quantization of games in order that quantum mechanisms be applicable to game elements. 

 

In a version of a quantum game, qubits represent agents' information containers. 

This is in contrast to or more succinctly, a generalization of the 0-1 logic of the 

computational bit. Let ),,( USI be a game that will be quantized for a quantum 

version. A quantum game can then be realized from  in the following way: 

 

Let H depict a Hilbert space representing the states of  ,   H  is an initial 

state, and S is now the space of permissible quantum operators (unitary) of the n agents. 

Then the classical game can be rewritten as ,(I  H ),, US . S will be a space of 

completely positive trace-preserving maps from H to itself, i.e., if Ss , then s satisfies 

the following condition: if 1)( tr , then 1)]([ str and is 0 is a positive operator, 

then 0)( s . Strategies are now written in the quantum mechanics' ket notation, 

kk H| where kH is a Hilbert space of permissible quantum operators for agent k. The 
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state of the game can then be written as the sum of quantum operators acting as agent 

strategies,  
k

kin || . Strategy operators that are "fair" are symmetric with respect 

to the interchange of agents. S may also be thought of as a subset of the group of unitary 

operators acting on an n-dimensional vector space, denoted by )(nU . Let ),...,( 1 nsss 

depict a strategy profile acted on by the agents initially. In a quantum scenario, each 

agent has two physical devices, one for the manipulation of the agent's qubit,  , and one 

for the measurement device which will determine the payoff from the state of the n 

qubits, 
t . Initially, there is a source of the qubits for each agent. The final state of the 

game can be computed as, 

 

sss n

t

f |)...(| 1                                             (2.15) 

 

The expected payoff for agent i can be given as the linear combination: 

 


r

fri rsu
2

|)(                                                 (2.16) 

 

where 
r

r =1, 0r for each r, and the sums are taken over all feasible n-tuples of 

ni ,...,1
 Hi . Payoffs are calculated similarly for other agents by interchanging the r . 

Generalizing the results of Benjamin and Hayden (Benjamin & Hayden, 2000), we 

construct a quantum game scenario that depicts a Nash equilibrium. Suppose agent i 

chooses a (unitary operator on n-dim vector spaces) strategy )(nUsi   randomly with 
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respect to a suitable Haar measure on )(nU . Let the competing coalition of agents 

denoted by -i respond by choosing a strategy, )()( 1

1,...,1
nUnUs n

nj
i




  . Then the 

probability of the outcome of a state consisting of some feasible n-tuple, ),...,( 1 n 

is: 

 

i

nU

t

i dxsssp
n

 




)(

01
1

|)...(|)(   

                                            i

nU

tt dxIsss
n






)(

0001
1

|)(|   

                                            i

nU

t dxIs
n






)(

01
1

|)(|   

                                            ),(Ip  

 

where )(nUsi  was chosen so that 00 |)(|)(   ii sIIs , 0 is the pure strategy 

depicting the existence of agent i's information only, utilizing the right invariance of the 

Haar measure, normalized so that )]([ 1 nUvolume n =1. Then the choice of strategies by 

the coalition -i will not matter because their respective payoff will be the average of all 

the classical payoffs. When agents choose as above, using this random strategy, a Nash 

equilibrium is reached because the agents cannot improve their respective payoffs by 

simultaneously changing stratagem. Higher dimensional quantum computation of states 

may give equilibrium strategies that are below or above classical equilibrium payoffs, 

and above classical cooperative equilibrium payoff are on regular basis (Benjamin & 

Hayden, 2000). This aspect of n-person quantum games should be researched further. In 

this regard, if quantum computation cannot always give a better equilibrium strategy than 
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the classical one, it can be used to give a better cooperative equilibrium strategy. What 

this means is that quantum strategies will elevate the cooperative payoffs of classical 

games, i.e., give an overall incentive for the voluntary conversion of all feasible games to 

cooperative games. 

 Recently, in Brunner and Linden (2013), by expressing Bayesian games in which 

a correspondence is made between game components and a test for Bell inequilities in a 

quantum two qubit system (using the usual Alice-Bob observer duality with a single 

source of classical particles being measured), quantum game strategies are proposed to be 

superior to classical strategies.  The correspondence used is the following: the source of 

particles for the test is equated with a common game advisor giving players information 

leading to correlated strategies in a game, the observers Alice and Bob are the game 

agents, and the average payoff function (for each agent) for the Bayesian game is a Bell 

expression.  In a general N-agent  situation, one can express an average payoff for an 

agent in a Bayesian game 

   

 
 

 
 

1,...,

1,..., 1,...,
1,...,

, , , , , ,

i N

i i i ii N i N
i N

N v  


 


 
   
 
 

    by,     

             
   ,

, |
i i i ii I i I

ii In ii I

XX A
N N N N N

N N

i i i i i i ii I i I i I i I i I
V X v X A p A X

 

 

 

    

 

    (4.44) 

where  1,...,nI N is the index space, N is the number of agents,  is the universe of 

discourse (states) for Nature, is a prior probability distribution on  ,
i In

i



 is the 

product space of actions,  
n

i i I



is the product space of agent types,    , :

n
i i ii I
  


  

a product space of mappings that assign a state of nature to an agent type, 
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  , :
n

n

i i ii I
i I

v v




 
   

 
 are the payoff functions.  In a Bayesian game, the advisor 

that correlates information (the source of particles to be measured by the N agents) to the 

N agents is not privy to the state of Nature.  Correlated equilibria in   are then pursued.  

Agents are asked questions which correspond to agent types and are answered with 

answers which correspond to actions.   The joint probability distribution, 

    |
n n

i ii I i I
p A X

 
is approximated by an appropriate statistic of repeated tests of 

questions and answers to agents.  Bell inequalities are given by linear  expressions of 

those joint probabilities, 

           ,
|

i i n ni I i In n
i iX A i I i I

S p p A X
   

   (4.45) 

where
   ,i ii I i In n
X A


 

 .  The probabilities      |
N N

i ii I i I
p A X

 
are the possible 

strategies.  Let
 

 max
Np D

L S p


 , where the probabilities p are taken over the space of all 

possible probabilities on ,i i

i I i IN N

XN
 

 
 
  
 
  , given by  ND .  Bell inequalities are then of 

the form  S p L .  Then Bayesian game average payoff functions given by (4.44) are 

Bell expressions (4.45) with the correspondence

           ,
,

i iN N N i I i IN N
i i i i X Ai I i I i I

X v X A 
   

 .   Using the classical local bounds of a 

Bell inequality, agent average payoffs must satisfy iV L . 
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 Now consider the convex n-polytope which defines the possible space of points 

having components that are the agent average payoffs.  Linear combinations of payoffs 

can also be used to get conditions,
 

0

1,...,

i i

i N

V 


 .  These inequalities are then facets of 

the n-polytope and the Bell inequalities
N

i i

i I

S V


 using the local bound 0L   can then 

be used analogously. Average payoffs are then Bell expressions and are limited by Bells 

inequalities when a classical source is used.  It is well known that in quantum correlation 

settings, Bell inequalities can be violated.  Non-local super-quantum correlations have 

been shown to exist which satisfy the no-signaling principle, communicating in sub-

luminal speed, while possessing stronger than quantum correlations.  In a quantum 

Bayesian game with non-local correlations using a quantum advisor source (entanglement 

case).  Bell inequalities in such games are then violated and as such super-quantum 

strategies in quantum Bayesian games outperform both quantum and classical strategies.  

Entangled systems using entangled bits or what we call e-bits in correlated quantum 

games are then a way in which to obtain what we call super-correlated strategies.  In our 

concept of inception games, injecting entanglement using super-quantum correlated 

stochastic (recursiveness), implies the existence of super-correlated strategies for guru-

consciousness and hence social dominance.  The expressiveness of using GTU 

constraints for super-quantum correlated gravity systems with generalized probability 

causation across spacetime fabrics further enhances the generality of very powerful social 

systems. 
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Lipschitz Games 

Global properties of games are usually described through the existence of final 

payoffs and solutions through equilibria as reviewed and discussed before.  Nonetheless, 

local agent influence on the game components of other agents is of paramount 

importance because of perturbative effects, if games are viewed as networks of agents 

with edges representing transitions to other states in terms of payoff potentials.  The 

concept of Lipschitz games describes the effect that a single agent's change of strategies 

will have on other agents in a normal form game.  In a Lipschitz game, a Lipschitz 

constant is the maximal amount of change in an agent that a change in strategy of another 

agent will cause.  More detailed, we review the space of Lipschitz games  , ,L n m  , as 

those normal form games G with Lipschitz constant   0G   less than a given amount

0  , with n agents with at most m strategies each. 

 

Def. The Lipschitz constant of a normal form game  I, , , , i

i I

G A P I n A A


   , where 

I is the agent index set with cardinality n, A is the strategy profile space for all n agents, 

with payoffs  , :i ii I
L L A


 , is the following constant  

  
   

    
' " ' "

' "

, , , , 1

max , ,
i i i i i i

i i i i i i
i I a A a a a a

G L a a L a a



       

    (4.46) 

where a metric on opponent spaces of actions i j

j i

A A



 is given by

   ' " ' ", # 1 | ,i i j ja a j n j i a a        .    
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The metric   on iA  for each i, measures the number of occurrences where agent 

actions are different for two agent strategy profiles in iA .  The main result for Lipschitz 

games is: for 0   and ,m n  , every game  , ,G L n m  with
 8 log 2n mn


   

admits a pure  -equilibrium (Azrieli and Shmaya, 2013).  Lipschitz games are connected 

to the concepts of continuity and anonymity.  Continuity refers to an agent’s behavior 

having minimal impact or effect on the payoffs of other agents. Whereas anonymity 

refers to the phenomena where each agent’s payoff depends on a notion of a collective or 

aggregate behavior of other agents.   Lipschitz games then define a spectrum (using its 

metric) for defining degrees of anonymity and continuity piecewise.  In inception games, 

defining Lipschitz constants measures the propensity of agents to cause defections of 

others or changing their own social power or influence and therefore, the propensity to 

change an inception potential.  Classes of inceptions may then be partitioned into 

Lipschitz-bounded groups of inception games, (i.e., inceptions in Lipschitz-bounded 

game classes are influentially bounded or can be measured to be a distance from certain 

defection potentials).  A Lipschitz-bounded (LB) class of games can be defined as 

      2 1 2 1 2 1, , , , , \ , , ,L m n L m n L m n         (4.47) 

Inception games G may then be subdivided into linked LB subgames in 

 2 1, , ,L m n    for appropriate subranges of m and n.  Agents participating in subgames 

   
1 2

2 1,
, , ,G L m n

 
  are then influence-bounded (social order-bounded) by the interval 
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 1 2,  and the LB subgame inception will admit an -pure equilibrium for

 
1 2

8 log 2n mn


    . 

Utility Theory Revisited 

Game structures depend on the mechanism of utility or an equivalent concept. Of 

the utility measures reviewed and discussed in the breadth section, all were, in some way 

dependent on a subjective or heuristic measure of relevance towards a judgment or 

probability of occurrence of an event or circumstance. Suppose one relaxes the 

dependency on absolute probabilities when calculating utility using a consistent method 

of judgment and validation. In this section, two separate general approaches will be 

reviewed and presented that endeavor to do exactly that. The first is a methodology that 

proposes to solve multi-criteria decision problems with subjective judgments that do not 

involve relative scales from probabilities or other subjective calculations, the Analytic 

Network Process and its parent, the Analytic Hierarchy Process. The second is the 

category of methods that utilize belief functions, either applied to probability structures 

or taken alone. These methodologies are (1) Upper and Lower Probabilities (ULP), (2) 

Dempster-Shafer models of evidentiary value (EVM), (3) probability of model 

propositions, and (4) the transferable belief model (TBM). The first three methods are 

generalizations of the Bayesian probability approach, while the fourth is based solely on 

belief functions. 

The Analytic Hierarchy Process (ATP) and its predecessor, the Analytic Network 
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Process (ANP) are methods developed by Saaty to calculate the consistency of possible 

judgments and hence, of actions taken in assessing an outcome (Saaty, 1996). These are 

methods for the solution to multi-criteria decision-making. Instead of utilizing prior 

probability structures and calculating utility based on them, the ATP and ANP use 

judgment measures based on an absolute scale, assigned to each strategy. These 

judgments are dominance factors of one strategy against another in pair-wise fashion, i.e., 

how more dominant is one element over another with respect to a criteria, attribute, or 

goal? The scale is from the integers in  1,...,9 . This is based on the acuity of humans to 

identify with the decimal system as unambiguously as possible. It may be that this is a 

bias toward western phenomena since different number systems exist in other cultures. A 

dominance score of 1ija  for strategy 
is against strategy js in regards to an objective 

means that both contribute equally. If 9ija   then 
is is 9 times as strong as js in obtaining 

the objective. Now let  1,..., nw w w be the vector of unknown scaled influences for 

each of n objects or strategies to be compared. A matrix,   i
ij

j

w
W w

w

 
   

 
 

, is then 

formed. If all pair-wise judgments are consistent then 
1

ji

ij

w
w

 . In the hypothetical W, 

the matrix is consistent. In a consistent matrix, all diagonal entries are 1. Furthermore, the 

principal eigenvalue of W is n, where n is the number of objects being compared. The 

corresponding eigenvector would be 
1 2( , ,..., )nw w w w , the original scaled judgments. In 

a consistent matrix, one has the following property: ij jk ikw w w for all , , 1,...,i j k n . 
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Hence, 
1k kW n W . Therefore, in normalized form,W and

kW have the same principal 

eigenvector. In a general matrix, this may not be true, i.e., in an inconsistent matrix. 

Finding the principal eigenvector of a general tabulated judgment matrix A, gives a way 

to recapture the original scaled individual judgment vector. So, if one surveys a group for 

pair-wise judgments between a set of n strategies,  
,ij n n

A a , where ija is the judgment 

comparison of strategy i versus strategy j, the principal eigenvector of A will give an 

estimate of the original unknown individual scaled judgments
1 2( , ,..., )nw w w w . The 

principal eigenvector can be transformed into a normalized or distributive form by 

dividing each element in it by the sum of all it elements, i.e.,  1 2

1
, ,...,D nw w w w

a
 , 

where 
1

n

i

i

a w


 . It can also be transformed into an ideal form where each element is 

divided by the maximum element in the vector, i.e.,  1 2

1
, ,...,I nw w w w

m
 , where 

1
max  i

i n
m w

 
 . For a given judgment matrix  

,ij n n
A a , the priority measure for the 

strategy i,
ip , can be computed as 

1

11

1

1 1 1

n

j

ji
i n n n

j ij

j i j

a
a

p

a a



  

 



 
. The total priority,

T

ip , for the 

strategy i is then just the normalized priority across all strategies, i.e., 

1

T i
i n

j

j

p
p

p





. Now 

let 
max be the computed principal eigenvalue of A. Define a consistency index for A as: 
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max

1

n

n








                                                               (2.19) 

This is a relative measure of the difference in eigenvalues between the judgment matrix 

and a hypothetical and exact priority matrix. An inconsistent judgment matrix would then 

be one that is exceedingly large. Saaty suggests a value of approximately .10 as a 

threshold reasoning that some inconsistency is needed in order to learn from new data, 

whereas large inconsistencies mean that one is not grounded experientially. The value of 

.10 translates into the property of inconsistency possessing one order of magnitude lower 

in importance than consistency, i.e. one values being consistent with observed data 9 

times more than deviating from this conformance. 

 The AHP model assumes that elements are independent of each other, hence pair-

wise comparisons separately, and that no feedback occurs from dynamic changes that 

may occur doing interactions. The ANP was developed to remedy this. First, besides 

forming the pair-wise judgments, for each pair of strategies, a third influence is 

calculated relative to a third strategy,  which of the two strategies in the pair Influence the 

third strategy more. This acts to cover the interaction that may involve multiple 

comparisons. The second alteration is in the formation of the matrix of judgments. Since 

multiple influences will be compared the matrix can now be separated into cluster 

matrices that represent the various components of a general network system. This system 

does not have to be a hierarchy as in the AHP. The judgment matrix will then form a 

supermatrix whose elements are comprises of component judgment matrices. In a system 

let hC represent the h-th component out of N. Let 
hn be the number of elements in that 
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component. We denote these
hn elements by  1,..., hh hne e . Form a super-matrix W as: 

11 1

22

1

... ...

. .

. ... ... .

... ...

N

N NN

W W

W
W

W W

 
 
 
 
 
 

, where 

1

1 1

2

2

1

... ...

. .

. ... ... .

... ...

j

j

i i

jnj

i i

j

i

ij

jnj

in in

w w

w
W

w w

 
 
 

  
 
 
 

                     (2.20) 

For each criteria or control, C, a judgment super-matrix 
CW  is computed. Priorities are 

computed as before except that now second comparison in relation to a third element is 

also done. The super-matrix is turned into a column stochastic matrix, 
s

CW , one whose 

columns add up to unity by this normalization of weights. Next the limiting sequence of 

powers, limS s k

C C
k

W W


  is investigated. The limiting priorities of 

S

CW 
, a stochastic 

matrix, depend on its reducibility, primitivity, and cyclicity. Saaty derives results for all 

four possible cases using Sylvester's theorem on the form of a function of a matrix. The 

function, in this case, is the limit as the powers tend to  . Consistency indexes can then 

be calculated based on the closed form calculation of 
S

CW 
and its priorities. If 

consistencies are insufficient, the DM may modify the most inaccurate of judgments, 

iterating as such. In this way, a method is derived that can assist in clarifying what a 

consistent and effective decision or strategy is in a multi-criteria decision problem. No 

prior probabilities were used, albeit, an iterative series of subjective judgments based on 

an absolute scale are needed as a starting point. 

 The group of models labeled as Dempster-Shafer Theory cover several criteria for 

judging decisions. These models structure the degrees of belief about a judgment be it 
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from probabilities or otherwise. Beliefs result from an inherent uncertainty about 

information. Fuzzy and Possibility Theories cover the cases of vagueness and ambiguity. 

The transferable belief model (TBM), will be used as a meta-model for models that 

utilize belief functions since they are generalizations of Dempster models, Bayesian 

probability, and other non-probabilistic models. We will closely follow the work from 

Smets (Smets, 2000) 

 The common setup for belief function-based approaches is the following: 

Let  depict a finite set of possible worlds of discourse. Let
0 represent the actual world 

in our existence. Denote by ( )bel A a "measure of strength" in the belief an agent has that 

0 A   . Beliefs will satisfy three conditions,  

(1) ( ) ( )bel A bel B or ( ) ( )bel A bel B ,                                                                       

(2) if A B  then ( ) ( )bel A bel B , and 

(3)  : 2 0,1bel   (or any other finite interval in  ) 

Every belief-based model should have two components, (1) a static part in which a 

description of the state of the belief exists given information available to an agent, and (2) 

a dynamic part, a mechanism for updating that belief when new information arrives for 

the agent. There are two ways that beliefs may be used by an agent, one is credal, beliefs 

are accepted as, and pignistic, where beliefs are utilized to make decisions. These levels 

are philosophically different and hence, the assumption for using probability to justify 

one from the other is not required. Belief functions derived from the credal level will lead 

to the pignistic methods for making decisions. The TBM justifies beliefs. TBM 
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generalizes Bayesian probability because it is based on beliefs, a generalization to 

probabilities. Beliefs are super-additive as probabilities are additive, i.e., 

( ) ( ) ( ) ( )bel A B bel A bel B bel A B     . In the TBM, beliefs satisfy the following 

monotone condition: 

1 11

( ) ( ) ( )... ( 1) ( )
nn n

n

i i i j j
i ji i j

bel A bel A bel A A bel A
  

      

Define the basic belief assignment (bba) on a set A, as a mapping  : 2 0,1m   that 

satisfies ( ) 1
A

m A


 , i.e., ( )m A is the "most specific belief" that 
0 A  . Put another 

way, if ( ) 0m A  then ( ) 0  and .m B B A B A    Define a general belief function using 

bba's as: 

( ) 0 and ( ) ( )    , .
B A

bel bel A m B A A
 

        

Note that when ( ) 0    with 1m A A A    bel becomes a probability function and 

the TBM reduces to the Bayesian Theory. Now define the dual of belief, the plausibility 

function, pl: 

, 0

( ) ( ) ( ) ( ),     
X X A

pl A bel bel A m X A
 

       

pl(A) gives a kind of generalized global measure of support in  that 
0 A  . Now 

define two functions to be used in the conditioning combining of beliefs, the commonality 

and implicability functions, respectively,  , : 2 0,1q b   : 
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,

,

( ) ( ),     

( ) ( ) ( ) ( ),     

X A X

X X A

q A m X A

b A bel A m m X A

 

 

  

     




 

Define the bba and belief functions conditioned on a set A as: 

( ) ( )

( ) ( ) ( ),    ( ) ( ),    ( ) ( )

( )  if 
( )

0        otherwise

A

C A

A A A

A

m B m B C

bel B bel B A bel A pl B pl B A b B b B A

q B B A
q B





   


 




 

These are Dempster's rules of conditioning. In order to continue to the pignistic reason 

for beliefs, one must construct a proxy for a probability function to be used in decision-

making. This probability function must come from our construct of beliefs from the 

credal stage. To this end, we assume that a probability function will be a function of the 

belief function. The transformed probability function built on bel will be denoted by 
belP . 

The transformation mapping doing this will be denoted by ( , )bel F . Then 

( , )betP bel F  . It will be dependent on both the belief function and the betting frame, F. 

The betting frame is the set of atoms in which will be the objects betted on. Wages are 

bet on the sets in 2F only. Bets are then assigned to atoms independently. Granules in F 

are defined as sets of atoms that have been assigned equal bets. F is then built using 

refinements and coarsenings of granules from an initial frame,
0F  , that was based on 

an initial credibility function. betP is then called a pignistic probability and is a classical 

probability measure. The pignistic probability can be given a precise definition: 



 

255 

 

 

,

( )
( )

(1 ( ))
bel

A w A

m A
P

A m


 


 

  

The philosophy of the upper and lower probability model (ULP) is that a belief structure 

cannot be defined by a single function when information is missing about prior wisdom. 

This translates into bounding all compatible beliefs by a constraint defined by a set of 

probability measures. IN actuality, this is done by finding the sup and inf of P(A) where P 

is a member of a constraining set of probability measures,  . Generally, any constraint 

law can be used using the probability measures from the constraint set of probability 

measures,  , for example, convex combinations from or particular types of measures, 

such as discrete or heavy or light tailed measures. 

Hybrid Games 

 Each of the explored structures of games and utility measurement reviewed had 

common features; the involvement of multiple agents (one of which may be nature), 

strategy or decision spaces for those agents, and payoff measurements for using those 

strategies. One may be better served by utilizing a more abstract notion of a game if one 

is to build a general holistic framework of games involving multiple aspects of 

dynamicism, behavior of organisms and physical entities, and uncertainty with or without 

resulting chaotic patterns. 

 

 We start by using the concept of an abstract game or economy, which generalizes 

the structure of preference for strategies from agents. This richer structure will be a better 

container for the varied approaches that we have reviewed. 
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Definition An abstract economy or abstract game will be a triplet  

 

))(,)(,)(;( IiiIiiIii FPSI   

 

where  

 

(1) I is a non-empty set or index of agents, 

(2) 
iS is a non-empty strategy space containing the feasible strategies for agent i, 

(3) SSPi : is a strict preference relation on S, for agent i, and 

(4) ii SSF : is the constraint relation for agent i. 

 

iF will restrict which strategies are feasible for agent i, given the strategy choices for the 

agent coalition -i. If ii SsF )( for all i and s, then the game is a regular one as reviewed 

above. 

 

Def. For each Ii , a good reply is a relation ii SSU : , defined by 

)}(),(:{)( ** sPssSssU iiiiii   . 

 

Def. An equilibrium of the abstract game  is a strategy profile Ss which is jointly 

feasible (a fixed point of j
Ij
FF


 , i.e., )(sFs ) and does not permit a feasible good 

reply, that is,   )()( sFsU ii ø for all Ii . 

 

Theorem. Suppose that for each i, 

 

(1) iS is a non-empty, compact, and convex subset of a Euclidean space, 

(2) iF is non-empty, continuous, compact, and convex, 
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(3) 
iU has an open graph in 

iSS  , and 

(4) )]([ sUHulls ii   for all Ss  

 

then the abstract game  has an equilibrium (Shafer & Sonnenschein, 1975)). 

One may retro-fit elements of each type of game reviewed into the framework of 

an abstract game. Specializations of each game are abstract games with assumptions 

placed on each of the components, I, S, P, and F. quantum fuzziness, that is, the 

superposition of quantum states using membership functions, instead of classical 

probabilities, can be viewed as a generalization to quantum probability. However, a more 

accurate view of this would be the quantum structure of fuzzy sets (Mesiar, 1995). By the 

nature of fuzzy sets, fuzziness of quantum structures would entail point-wise operations 

on a global structure. In this regard, one would quantize fuzzy games. We then take the 

fuzzy game strategies and apply the feasible quantum operators in order to define final 

payoffs in terms of fuzzy values. Next, one would then defuzzify these values to crisp 

values in order to return to the realization of classical payoff values. If the macro-

structure of all survival games is evolutionary, then by setting up a game as a very 

general evolutionary structure that consists of deterministic feedback and non-feedback 

(differential) and stochastic elements, and then apply quantum fuzzy operators, as micro-

strategies, then a holistic structure begins to emerge for a general abstract game. Using 

the framework of an abstract game with the macro elements of differential and stochastic 

systems and the micro operators of quantum fuzzy systems, a connective meso-system 

can be produced. 
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Behavioral game theory and economic choice utilize behavioral and 

psychological aspects of human decision making in its strategy and payoff descriptions of 

a game (Camerer, 2003). Neuroeconomics blends the ideas of neuroscience and aspects 

of economic and behavior game theory, to endeavor to explain the way organisms make 

decisions in a biological landscape. Bayesian probability and relative preference ordering 

play large roles in the theories of this approach. For example, prior distributions that bias 

the way that some choices are presented enter into the equations for preference of 

strategies, along with preference ordering from payoff comparisons. In these approaches, 

order preferences rely on relative ranking based on a myriad of physical and 

psychological profiles of the value of goods. Research in this field has recently shown 

that the orbitofrontal cortex (OFC) in primate brains independently assign value to choice 

(Padoa-Schioppa & Assad, 2006). This functionality is separated from the choice bias 

that may be introduced by sensory or motor process input to other parts of the primate 

brain in forming a choice stratagem. Value assigned by humans may be quite abstract, as 

in “pure altruism” or the “warm glow” feeling that one obtains when one gives to charity 

with advance notice of not receiving any apparent physical or psychological reward. A 

recent result using fMRI on brains of college students subjected to games of taxation and 

shared charity showed that the caudate, nucleus accumbens and insula components in the 

brain displayed activity precisely when they were confronted with making such purely 

altruistic choices (Harbaugh,
  
Mayr,

 
& Burghart, 2007). The structure of the constraint 

and preference functionals, P and F,  may be able to contain or better describe these 

phenomena in an axiomatic fashion. For example, P may have components that represent 
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the various choice sieves in the brain, i.e., each component of the brain that affects choice 

stratagem based on a type of stimuli. F may then act as the inhibitor or excitor functions 

for these components. Both of these functionals can then be the basis for a new 

neurological substrate that can replace the familiar utility theory used in classical game 

theory. In addition, these functions can be quantum, fuzzy, and chaotic in structure, since 

they entail biological information. 

 This holistic approach to a super-structure for games and decision-processing is to 

be investigated in detail next. In the context of an abstract game , we can define the 

preference structure according to a belief system of the agents, which may be behavioral 

(stochastic) and deterministic. Belief also entails fuzziness. The quantum nature of belief 

is manifested by a global quantum entanglement phenomenon. What this means is that 

the information an agent receives about all other agents through the play of strategies can 

be shared before realization. 

 Details of quantum fuzzy games must be researched in order to produce a better 

idea of how equilibriums can be computed. Under uncertainty, these models may be 

chaotic and as such, emergent behaviors need to be investigated as a whole. The idea that 

a general game involving organic and inorganic agents, each making holistic decisions 

about micro and macro strategies  and connected by meso-strategies may define a more 

realistic organism. The interplay is not just the Butterfly Effect. It is the global game. 

Consciousness may be modeled in the large, by a holistic game structure. 
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Continuum Games 

Consider the case where the roles of agents in a game are so small because of the 

shear size of the population of participants. Large markets, job industries, multi-cellular 

organisms of extreme complexity and size are some examples of these games in the limit. 

In such games, the number of agents will occupy a continuum set that is isomorphic to 

the unit interval [0,1].  

 

Def. A continuum or non-atomic game will consist of a algebra,   S  of subsets of 

[0,1] and a real-valued function v defined on S , satisfying the following: 

(i) ( ) 0,    

(ii) ( ) ( ) ( ),  ,  and A B A B A B A B     S . 

 

The elements in [0,1] are the agents and those of S are the coalitions of the game.  

Typically, we shall have continuum games of the form ( , , )A  , where [0,1]A  , is 

the Borel algebra,   and  is the Lebesque measure. 

Def. The continuum game ( , , )A  is in (0,1) normalization if: 

(i) (0,1) 1   

(ii) ( ) 0  S S     

(iii) if ( ) inf ( )
i

i

i

i

S

S S

S S 




  ,  then 0.   
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Def. An imputation for the game ( , , )A  is any (signed) measure  satisfying: 

(i) ([0,1]) ([0,1])   

(ii) ( ) ( )S S S     

 

Def. The measure  dominates  , written   , if ( ) ( )A A  for all A such that 

sup{ ( ( )} 0
B

A B B 


   . 

 

Definition. For any game v, a null set is [0,1] \ S  for some carrier S of v. An atom is any 

measurable non-null set S such that, if ,   where S T Q T Q    , with T and Q being 

measurable sets, then either T or Q is a null set. 

 

Def. A game v is non-atomic if it contains no atoms. 

 

The following is a framework and requirements synonymous with the Shapley value for a 

continuum game v: 

Given a continuum game v, the value of v is a finitely additive set function (signed 

measure) [ ]: [0,1]v  . If   is an automorphism of [0,1] , then, for any v, we define 

the game 
*v  by 

* ( ) ( ( )) S S S     .   satisfies the following (modified Shapley 

axioms): 

(i) For any v, [ ]([0,1]) ([0,1])    
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(ii) For any game v and automorphism  , 
* *[ ] [ ].      

(iii) For games v, w, and scalars ,  , [ ] [ ] [ ].w w         

(iv) If v is monotone, then  [ ]   is also monotone (Owen, 1995, p.348). 

 

An existence and uniqueness statement about  defined on the space of all non-atomic 

games cannot be said (there are counterexamples and the space is too large to 

accommodate closedness under any norm). However, by selecting a suitably large and 

useful subspace of the space of non-atomic games, such an existence and uniqueness 

theorem can be shown. One can then proceed with Shapley-like analysis, as in the finite 

agent population cases. To this end, we define the following: 

 

Def. Let ( )

0 1{ , ,..., }m

mS S S S  be a sequence of measurable sets in , satisfying 

0 1 ... [0,1]mS S S     . 
( )mS  is called a chain of sets. Define a number using the 

space of such finite chains in as ( ) 1

1

( ) ( )m

m

i iS
i

S S   



  . Letting m , we 

approach infinite chains in and appropriately define a new number as ( )
( )

sup m
m

S
S

 




.   is the total variation of the function v.  

 

Def. Denote the space of all functions with finite total variation on [0,1], i.e., bounded 

variation on [0,1] by  
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 [0,1]  |  BV    . 

 

Theorem. ( [0,1], )BV   is a Banach space. 

 

Def. Define a closed subset of [0,1]BV , denoted by [0,1]bvNA , as follows; define the 

following spaces: 

 [0,1] |  non-atomic measure on [0,1], ([0,1])=1NA      

 [0,1] | [0,1],  continuous at 0 and 1 with (0) 0cBV f f BV f    

then 

 +[0,1] | ,  [0,1], NA [0,1]bvNA v v f f cBV      

 

Theorem. There exists a unique value,  , on the space [0,1]bvNA satisfying the modified 

Shapley axioms for a continuum game. 

 

Fuzzy sets defined on [0,1] can be described as the set of Borel-measurable functions 

:[0,1] [0,1]f  (into mapping). Now define the set of all such fuzzy sets as F. A fuzzy 

set function is then a mapping 
* : F  . It can be shown that 

*( ) ( )S S   , where 

 is the characteristic function of the set S S and pNA  , where 

 2

1| ( ,..., ), , ([0,1] ), (0) 0n

n ipNA f NA f C f           
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Furthermore, the existence and uniqueness of fuzzy set functions 
*v defined on pNA that 

satisfy modified Shapley axioms: 

(i) * * *( ) ,w w       

(ii) * * *( ) ,uv u v  

(iii) *

[0,1]

( )f fd    

(iv) 
* monotonic   monotonic   

where , ,  , ,  ,  and v w pNA NA f F      can be shown. 

Behavioral Game Theory 

Nash equilibrium and other tenets of classical game theory assumed the 

rationality of the agents of a strategic game. Where organisms with reflection are 

concerned, rationality may escape the situation rapidly. Humans inevitably employ 

emotion, mistakes, limited or incomplete foresight, unknown or imprecise opinions of 

others and their respective abilities, and adaptive learning. It has been said that Analytical 

Game Theory is to the social sciences what the periodic table is to physical chemistry, 

taxonomy of strategies for societies (Camerer, 2003). Behavioral Game Theory 

endeavors to empirically approach real world non-cooperative games and contrast their 

unfolding sage with the predictions from Game Theory. In this regard, and as a whole, it 

has been observed that Game Theory is half right and half wrong. What has been 

observed is that Mixed Strategy Equilibriums (MSEs) discussed before as probabilistic 

mixtures of pure strategies applied as the agents strategy space, is asymptotically accurate 
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for many real world gaming. Strategies seem to fluctuate around this rule. A popular 

alternative to MSE has been the usage of the quantal response equilibrium (QRE). In this 

strategy an agent does not choose the best response with probability 1. Rather, they 

choose a better responder, not looking for the ultimate prize payoff each time, as in Nash 

equilibrium. Analytically and typically, a QRE uses payoff response functions of the 

form (logit or exponential): 

 
 

 



is ks

isskiuisp

iiii essusp

i esp
)/)),()((

),()(

)(





 

Using this, agents fix a strategy and form heuristics about other agents, computing 

expected payoffs given those heuristics. The parameter is used as a noisy measure of 

sensitivity to differences in expected payoffs. 0 means strategies are chosen 

equiprobably. Nash equilibrium strategies are akin to using infinitely large . QRE is 

then an intermediary between randomization of strategies and Nash Equilibrium. In other 

words, QRE can be used to roughly approximate irrational strategy development given a 

noisy environment of knowledge and emotion. Generally, behavioral games can be 

categorized under one or a combination of the following scenarios: 

(1) Simple bargaining games: ultimatum, dictator, or trust games 

(2) Mixed strategy games 

(3) Bargaining games 

(4) Dominance-solvable games 

(5) Learning games 

(6) Multi-equilibrium coordination games 
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(7) Signaling and reputation games 

 

Under simple bargaining games, Dictator games (single decisions) have an agent 

dictate the division of a pot between themselves and other agents, the so-called “take-it-

or-leave-it”. Ultimatum games are dictator games that give the responder agents a chance 

to reject the offer from the proposer. If the responder rejects the proposer’s offer, the 

payoff is zero for all. In trust games, the amount to be distributed by the dictator (in this 

case a trustee) to all is determined by an amount invested by a third party, the investor. 

Prisoner’s dilemma (PD) and public goods (PG) games are well examined examples of 

these types of games, but they may not yield analytical information about the agents’ 

social choices. Experiments have shown that 10-20 percent of agents show a small 

amount of altruism in dictator games (they offer more than would otherwise be expected 

from a dictator’s point of view). Alas, they also act out negative reciprocity, rejecting 

offers in ultimatum games that are less than 20 percent with a probability of 0.5. Because 

of this, proposers will offer 30-50 percent in ultimatum games. Investors in trust games 

risk nearly half their original investment and in turn usually receive nothing, i.e., make no 

profit. On the whole positive reciprocity is weak compared to negative reciprocity. That 

is, people are quicker to avenge attacks than to thank someone (Camerer, 2003). In 

“inequality-aversion” models, agents are concerned about their own payoffs and in the 

differential between their payoffs and those of others (Fehr & Schmidt, 1999). If 
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),...,( 1 nxxx  is the allocation vector amount for an n-agent game, then the “inequality 

aversion” model describes agent i’s utility as: 











ik

ki

ik

ikii xx
n

xx
n

xXU )0,max(
1

)0,max(
1

)(


                  (3.7) 

where 10  i ,
i  is a “guilty” weight for having a higher allocation than others, and 

ii   where 
i is an “envy” weight for disliking having a lower allocation than others. 

Another measure of inequality aversion is the “equity, reciprocity, and competition” 

model (ERC) of Bolton and Ockenfels (2000): 

1

( ) , i
i i n

k

k

x
U X U x

x


 
  

  
 


                                                      (3.8) 

In this model, agents strictly prefer a relative payoff that is equal to the average payoff 
n

1

. In other words, in an ERC model, agents endeavor to not show up on the “radar screen” 

for outlandish rewards or losses. This may also be a form of simultaneous risk aversion 

and egalitarianism (Kroll, 2006). A third form of inequality aversion is Rabin’s fairness 

equilibrium given as follows: in a 2-agent game, let ib 3 denote agent i’s belief about the 

other agent. Let )( 3

max

ii b  , )( 3

min

ii b  , and )( 3 i

fair

i b  be the maximum, minimum, and 

fair payoffs respectively for agent i from the other agent based on the preconceived 

beliefs. Then agent i’s “reciprocal kindness” toward the other agent, given an action of 

ia 3 by that other agent is: 
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Agent i’s perceived kindness of the other agent toward them is: 

)()(

)(),(
),(

minmax

3
3

iiii

i

fair

iiii
iii
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cbc
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
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




 

  

Then the social preference of utility for agent i is given as: 

)],(1)[,(),(),,( 333 iiiiiijiiijii bacbbacbaU     

where  weighs fairness against money. The “fairness equilibrium” is the case where 

iji cba  , i.e., when beliefs of others are correct, beliefs about what others believe are 

correct and all agents maximize social utility (Camerer, 2003, 106). An extensive form 

extension to Rabin’s “fairness equilibrium” is given by Dufwenberg and Kirchsteiger 

(2004). In this extension, kindness functions are defined as differences between payoffs 

and fair payoffs. Here we will generalize the notation to N-person finite games. The 

measure of agent i’s kindness to agent i is then given by: 

)))((()))(),(()))((),(( ijij

fair

jijijijijijiij hbhbhahbha     

)))((()))((),(()))((),(( jkijk

fair

jjkijkijjjkijkijiji hchchbhchb     

where 

2

))(,())((,(
))((

minmax

ijijiiijijij

ijij

fair

j

bahba
b









  

The utility function is then given by: 
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where h denotes the stage of history of the game, i.e., were the agents are in the decision 

branch of the game, )(hbij  is the belief that agent i has about agent j’s kindness to agent i, 

and Yij is an  exogenously given non-negative number for each pair (i,j) that measures 

how sensitive agent i is to the reciprocity concerns regarding agent j, i.e., how sensitive 

one agent is towards the feeling about kindness/unkindness towards another agent 

(Dufwenberg & Kirchsteiger, 2004). Note the differences between this development and 

that of Rabin’s reciprocity. Scaling is absent; instead a sum across all agent of the product 

of reciprocal kindnesses is done. The kindness of another agent, j, does not figure directly 

in the calculation of utility. Dufwenberg and Kirchsteiger proceed to define a different 

kind of equilibrium that they label as sequential reciprocity equilibrium (SRE) in which 

agents optimize social utility, Ui , and in addition, strategies match the belief vector 

functions, bij. The existence of an SRE is proven under finite N-person games. From our 

perspective, the exogenous variable Yij can be distributed according to a pdf or Bayesian 

belief system. All beliefs are conditional, as probabilities are, if given from a Bayesian 

viewpoint. However, these belief frameworks are adaptive in humans. Experiential 

processes constantly shift our attitudes toward externalities. These shifts are learning 

algorithms and as such, human games are multi-stage in nature, unless the terminal nodes 

of one game lead to extinction or death, the so-called stopping games mentioned before. 

Therefore, the games demonstrated by Behavior Game Theory introduce the 
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psychological and bounded rational elements of human decision-making into multi-stage 

stopping games. In another model of reciprocity, Falk and Fischbacher (2006) use both 

outcomes and intentions about beliefs of kindness in calculating strategy equilibria, 

defining emotional terms at each node, n, of the game. Kindness (fairness measure) is 

denoted by: 

))(1),(2,())(2),(2,()( jijjii ssnssnn    

where si is i’s strategy, i is i’s payoff, )(1 is is i’s belief about j’s choice (first-order 

belief), and )(2 is is i’s belief about j’s belief about i’s choice (second-order belief). 

Kindness is then the difference between an agent’s expected payoff and that of others, 

based on first and second-order beliefs. Next, an intention function, ),,,( 00

jiji  is 

given that compares a pair of payoff functions, ),( 00

ji  with an alternative pair, ),( ji 

in the following manner: 

1),,,( 00  jiji  if (1) j gives more to i than to themselves when, in fact, j could have 

given i less, or (2) when j gives less to i than to themselves when, in fact, j could have 

given i more, and ijiji   ),,,( 00
for some value i , if (1) j gives more to i than to 

themselves when, in fact, j could have given i even more, or (2) when j gives less to i 

than to themselves when, in fact, j could have given i even less. Finally, an intention 

factor, ))(2),(1,( ii ssn , that depends on the node n, and the first and second-order beliefs, 

))(2),(1( ii ss  and given the payoff pair, ),( 00

ji  , is defined as: 
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),,,(max))(2),(1,( 00

),(
jijiii

ji

ssn 

  

where the maximum is taken over all possible alternative pairs, ),( ji  available at node 

n. Now suppose that there is a path from node n to an end or terminal node t in a finite 

game branching. Call the next node in this path M(n,t). Define i’s reciprocation of j by: 

))(2),(1),,(())(2),(1),,((),( iijiij sstnMsstnMtn    

Agent i’s utility at a terminal node t is then given by: 

 


n
tn

jii tnnnttU ),()()(lim)()(   

The limit is taken over all nodes n that precede the terminal node t. In this measure, the 

physical payoff is reduced by the human emotional payoff that takes into account 

measures of kindness, intentionality, and reciprocation along all nodes on a path to a 

terminal node t. Here, the value, 
i is a weight that i assigns to the emotional payoffs 

(Falk & Fischbacher, 2006). Again, we mention that a more appropriate weight may be 

stochastic with respect to a Bayesian pdf. The values i , represent subjective measures of 

intention, that is, what agents think relatively about how others could have treated them 

better or worse on other paths or occasions, hence the intentionality.  

We switch to mix strategy games again, visiting the notions of patent race and 

location games. Patent races are investment games in which a group of firms may invest 

any portion of a fixed endowment, e, towards the development or sponsorship of an idea 

or product. If B represents the budget of an organization, then after investing e in a 

product, eB  is left for the firm. The dynamics of game are as follows: the firm that 
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invests the most amount of endowment is awarded a fixed prize, r; if the firms spend the 

same amount, no firm earns a prize. There exists a unique symmetric MSE where firms 

spend the total endowment, e, given to them for the product with probability 
r

er 
, and 

smaller amounts with uniform probability 
r

1
, including the choice of no investment, 

0e . Empirical results show that the MSE is surprisingly accurate in predicting the 

game choices of participants. While participants usually picked 0e too often, the most 

common case was to invest all of the endowment (Rapoport & Amaldoss, 2000). 

Bargaining games include those games in which economic agents agree on pre-

defined terms of agreement usually for trading. Structured and unstructured bargaining 

games are possible. In unstructured games, agents decide on the type of messages to be 

sent to other agents, the order of the offers, and other facets of bargaining. In structured 

games, an experimenter decides on the bargaining details. More human behavior occurs 

with unstructured bargaining games. Experiments have shown that agents gravitate 

toward focal divisions in unstructured bargaining. In the case of exchange of tokens for 

money utility, focal points are directly competing. Having two focal points converges the 

game dynamics into a bimodal distribution in agreements and a general increase in the 

disagreement rates in the negotiating. Self-serving biases are self-fulfilling prophecies, 

that is, biased bargainers will usually collect or listen more closely to their perceived 

more important information, neglecting a more diverse spectrum and distribution of 

input. The isolated bargainer, in this case, the biased bargainer creates counter-productive 
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coalitions. The common thread in studies of unstructured bargaining games in reality is 

that offers and counteroffers gravitate between an equal split of the utility and those 

predicted by classical game theory. In addition, agents do not use induction as a tool for 

learning about negotiations, as much as theory would predict. We do not look back too 

much when endeavoring in negotiations. 

We revisit dominance-solvable games in a more general context.  In dominance-

solvable games, agents assume that others will act rationally in measuring what is a 

dominant strategy and will act accordingly. Knowing this to be true, one can then make 

an educated guess about what others will do. They will essentially all respect the 

dominance credo of strategies. If this be the case, then by iterating through each strategy 

possibility, an agent can move toward eliminating dominated strategies for other agents, 

opening up possibilities for initially un-dominated strategies to become dominated. If this 

sequence of dominance iterating leads to an equilibrium then the game is called 

dominance-solvable. Dominance solvable games contain the familiar iterative guessing 

game of “she thinks that I think that she thinks that I think that, ad infinum). This can be 

modeled by the concept of n-level agents: an n-level agent thinks that all others are (n-1) 

level agents who, in turn, think that all others are (n-2)-level agents, ad infinum. Studies 

show that agents utilize two to three steps of iterations, employing dominance 

measurability for their own decisions, but not for others after these iterations (Camerer, 

2003). Learning may be key to whether these games lead to successful outcomes. Several 

methods depend on experience-weighted attraction (EWA), the method of weighing the 

experience of choosing various strategies and what was actually paid from them. 
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Attraction here means a numerical evaluation assigned to a strategy after the game play. 

On the spectrum of experience are the extremes of belief learning in which no particular 

attention is paid to what was actually learned and reinforcement learning in which only 

the experience of payoff history and corresponding strategies is used. More specifically, 

let ( 1)

S

tA  denote the attraction of strategy S before play at time t-1. Reinforcement updates 

attractions by: 

( 1)

1 ( 1)

( 1) (1 ) ( 1)

( 1)

S S

t t t

S S

t t t

A A t t

A A t 
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 



 

 

     

  
 

where the strategies S  ,are neighboring or similar strategies to S, 
t represents a 

generalization of reinforcement from S to S  at time t, and  is a damping factor for 

the prior time from the present. These are cumulative effects. One can also use weighted 

attractions that are not cumulative, but are dependent on belief weights alone, i.e., 

( 1)

1 ( 1)

( 1) (1 )(1 )

( 1) (1 )

S S

t t t

S S

t t t

A A t

A A t 

  

  



 

 

    

   
 

Models of reinforcement can generalize
t based on actual payoff differentials, lagged 

attractions and learning rates. Learning Direction theories endeavor to predict the 

direction of changes in strategy choices. They cannot point to specific strategies, just the 

direction of change and hence can be of limited use since the topology of strategies can 

be such that neighboring strategies that are in the direction of improvement can still be 

very bad choices. Imitation is another method of strategy learning. In imitation, as one 

might guess, successful strategy regimes are copied by others in the hopes of following 
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the footsteps of a perceived successful strategist. Imitation more often, does not require 

that any long-term beliefs be formed, instead relying on only successes. Local evolutional 

models use imitation, as well as animals and children. Imitation is also used as a rule 

when agents are under severe time constraints to make decisions. 

Hybrid methods in which weighted versions of both types of learning seem to 

better predict game scenarios. Rule learning is a technique in which learning rules (not 

strategies, but rules for choosing strategies) are chronicled closely and strategies 

gradually shift toward those that exhibit superior performance (Stahl, 2000). One defines 

a behavioral rule as a map : ( )tr A  where t is the information available at time t 

in the game and ( )A is the set of probability measures defined on the action space A. 

Define an array of evidence or scores: 0( , , , )R

ny y y where 
iy is the “evidence score 

such as a weighted average of previous play by others a form of imitation, belief learning, 

reinforcement,  etc, and the last evidence, 
ny , is the Nash payoffs. Since the space of 

rules may be continuous, we can generalize these to be functions parameterized by  , 

mapping the information available during a game to an evidence score, ( , , )tY  . Assign 

weights ( )i i   that reinforce evidence 
iy . A weighted-evidence array is then 

  ( , )
T

R ty Y    . One can then use a probability distribution that assigns a 

probability of choosing an action j based on these evidence-weights. Stahl using a logit 

probability distribution. 
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Games in which multiple equilibrium exists necessitate  a coordinated effort 

among the agents to a selection criteria. Three types of coordination are prominent: (1) 

pure matching games, in which all equilibria have the same payoffs for an agent, in 

which case other subjective methods are used, (2) assurance games in which the payoff-

dominant equilibrium are usually risky, and (3) battle-of-the-sexes (BOS) games, in 

which equilibria are chosen based on non-technical or objective personal preferences. In 

studies, agents converge toward payoff-dominant equilibria regardless of the type of 

games involving coordination. In BOS games, if a leader emerges among the agents, 

announcing a common coordination schema to others, failure is less likely. Pre-play 

(before a game starts) coordination also lessens the possibility of failure. If more than one 

agent contend for this type of leadership, arguments ensue and coordination usually fails. 

In signaling games with asymmetric information (some agents know more about 

the game than others), the sender may send private information to any receiver agent. 

Studies show that agents converge invariably to signal equilibria, but the details of which 

equilibrium often remain obscure and less likely equilibria emerge as those reached. 

Order-statistic games are versions of signaling because in such games a number is chosen 

by an agent and their payoff depends on a statistic computed from those numbers picked, 

i.e., the medium, mode, minimum, maximum, etc. Here the payoff for agent i is defined 

as ( , ) ( , (( ) )]j k j j

i i i i i js s f s F s   , where F is some statistic of the vector of strategies, 

( )j

k kjs , and f is some well-defined function of the agent strategy 
j

is and of the statistical 

estimate (( ) )j

i jF s . The signals send are the actual numbers chosen by other agents. 



 

277 

 

 

Knowing that agents are picking numbers tells the agent something about the statistic and 

hence of the payoff possible. 

Game theory is inherently a story about the survival of entities using decision 

strategies, against the backdrop of an anti-universe of competing decision landscapes. 

The universe has been more succinctly described by emergent properties of many-particle 

quantum systems, uncertainty within the fuzzy or probabilistic structures, the evolutional 

rules of engagement, and macro stochastic and differential feedback systems. Chaos, as a 

separate emergent property has not been studied in the context of a macro-game. A 

holistic game should incorporate chaos, as a possible manifestation of value. This new 

game structure embodies the holographic approach as well. Seen from a large-scale lens, 

games emerge as evolutionary processes, with inherent chaotic behavior. 

Microscopically, though, strategy decisions may be quantum fuzzifications of classical 

decisions.  In order to consolidate all physical scales, in the tradition of theories of 

everything (TOEs) in physics, an analogy in game structures should also simultaneously 

handle quantum, relativistic, and nonclassical logics environments for games.  This is 

considered in quantum-gravity-induced games as will be discussed in the main section in 

terms of causaloid-based QG and a general framework for uncertainty from Zadeh 

(2006). 

Generalized Game Theory and Social Games 

Burns and Roszkowska (2001; 2005) propose a generalized approach to game 

theory that more completely accommodates psycho-social and cognitive-judgmental 
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structures.   Their generalized game theory (GGT) entails social structures as a 

subcomponent of a game.  Rule complexes generalize game state transitions by meta-

modeling more recent cognitive rule structures.  The approach of this study is to utilize 

Zadeh’s GTU constraints, a higher order logic representation of uncertainty to explicitly 

express general uncertainties. 

Rule complexes C, consist of a set of rules and/or rule complexes.  Rule 

complexes are generalizations to rule sets.  Rule complexes are closed under set-theoretic 

union, intersection, differences, and power set generation, and they preserve set inclusion, 

(i.e., if 
1 2C C  and

2C C  then 
1C C , and if 

1 2,C C C  then,

  1

1 2, 1 2 1 2 1, \ , 2
C

C C C C C C P C C  ).  If B is a complex, a subcomplex A, A B  can 

be generated from B by deleting rules and/or redundancy from B.  Rule complexes can 

express interdependencies of rules and hence generally, social relationships and 

organizational connectives.  Essentially, rule complexes generalize state transition rules 

in an attempt to model complex social network relationships.  GGT games then use the 

class C to replace classical state transitions.  Situational context is also taken into 

consideration in time.  In this way, a GGT game G(t) is time situational dependent.  

Agent’s social roles are embodied by a component of the rule complex. 

Briefly, we outline the components of a situational GGT game, G(t).  Let 

 , ,ROLE i t G  denote agent i’s role expressed as a rule complex at time t. A situational 

game is then expressed as      , , ,
i I

G t ROLE i t G R


  where R is a general rule 

complex that handles payoff rules (among other non-agent components of G(t)) and I is 
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the index of agents.  Involved in the general role complex is a subcomplex of agent belief 

models or frames given by  ,MODEL i t . Agent values are expressed as the subcomplex 

 ,VALUE i t . Agent strategies are given by a subcomplex  ,ACT i t  and judgment 

subcomplexes are expressed as  ,J i t .  In behavioral game strategies,  ,J i t  houses the 

complex of rules about how agents arrive at truth values, validity, value and eventually, 

the choice of strategies in given time situations.  One then has the rule complex inclusion 

chain, 

          

 

, , , , , , ,

,

( )

g

g

g

MODEL i t VALUE i t ACT i t J i t ROLE i t

ROLE I t

G t







  

where g  is the set inclusion for rule complexes in a GGT game. 

When actualizing actions (which compose strategy profiles), one considers a 

value, v, from VALUE(i,t), that aligns with the selection of an action a.  The essential 

qualities or qualia of v is denoted by Q(v).  The expected qualia of taking action a, is 

denoted by QE(a).  A judgment rule from  ,J i t is applied to a measure of the similarity 

of QE(a) to Q(v). Let B denote the actions which are candidates for actionization by the 

agent. Denote a similarity divergence measure DQ, which differentiates qualia between 

value goals and actions.  The action b
*
, to take in B is that which maximizes the judgment 

operator resultant, 

       *b arg max , ,Q E
b B

J i t D Q b Q v


      (4.48) 
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The action b
*
, is a satisfier of v in the tradition of Simon (1957).  DQ defines a preference 

ordering for value/action (dis)similarities.  For an agent i,  ,B ACT i t .  

In asymmetrical two-coalition games, agents prefer to maximize the differences 

between outcomes or payoffs between themselves and the other coalition provided agent 

stability persists inside each coalition.  Their judgment rules would then weigh actions 

from the best response space of actions,    1, , 2,ACT t ACT t for situations at time t such 

that, 

  
 
 

                
1

2

* *

1 2 1 1 2 2
1,

2,

, arg max 1, , 2, ,
Q E Q E

a ACT t

a ACT t

a a J t D Q a Q v J t D Q a Q v




    (4.49) 

While classical closed games are structurally static, (i.e., fixed agents, rules, etc.), 

the concept of an open game is introduced in GGT to accommodate changing social 

attitudes of groups of agents.  In open GGT games, role complexes may evolutionarily 

change based on diverse social constructs.  In inception games, the coalitions may evolve 

to different (non)cooperative rules of engagement within and outside of each coalition.  

The concept of n-agency may dramatically change the dynamics of intra and inter-

coalition behavior.  Game solutions take on a different meaning in terms of satisficing.  

Common solutions in GGT are then strategy profiles that result in the satisficing of all 

agents.  An analogous version of Nash equilibrium for GGT follows, 
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Def. Let G be a social game in GGT, I an index of agents, and  i i I
S s


  , the set of 

corresponding strategies.  A strategy profile  * *

I i i I
a a


 is a Nash equilibrium in pure 

strategies in G if, 

             * *, , , , , ,Q E i i Q E i iJ i t D Q a Q v J i t D Q b a Q v    
   

 

for all agents i I  and alternative strategies
i ib s .   Schilling focal points can then be 

chosen based on uniform satisficing among all agents in role complexes. 

 

 For this study, we consider the general expression of uncertainty from Zadeh 

(2006) applied to the various rule complexes that comprise  I,ROLE t  and R in G.  

Refer to Appendix C for details on the GTU and generalized constraints as 

metaexpressions of general uncertainty. 

Linguistic Geometry and Large-scale Hypergames 

Large scale games in which the number of interacting agents and strategies 

produce computational explosiveness when searching for equilibria present a practical 

problem in complex adaptive systems modeled by extended game forms.  Inceptions, 

may present with very complex interaction scenarios.  Even in the presence of 

manageable numbers of agents, the landscape of possible dynamic stratagem, payoffs, 

and uncertainty regimes in inceptions manifest computationally impractical equilibria 

searches.  Stilman (2000; 2011) and Stilman, Yakhnis, & Umanskiy (2010) develop the 

concept of hypergames as linked abstract board games using a geometric space definition 
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of knowledge representation and reasoning.  Linguistic geometry (LG) is a game-

theoretic approach to solving for solutions (equilibria) in large-scale extensive-form 

discrete games.  LG was formed experimentally based on the strategies of chess players 

in human reasoning which is extended to apply to general tactical warfare and adversarial 

reasoning games.  First one defines ABGs: 

 

Def. Abstract board games (ABGs) are tuples  0, , , , , , ,p tX P R v S S     where, 

 i i I
X x


 is a finite set of relatively positioned points (cell locations) on an abstract 

board;  i i J
P p


 is a finite set of (agent’s) pieces belonging to one of two coalitions 

defined, 1 2P P P , with possible asymmetric teams, (i.e., 
1 1 2 2 1 2,P J J P J J J    

);  ,pR x y is a set of binary relations of reachability in X   ( ,x y X ) using the pieces P, 

(i.e., Rp indicates whether a position y is reachable from another position x by the piece 

[agent] p);  is the state space; v is a non-negative function representing the values of the 

pieces; 0S and tS are the sets of start and target states respectively where
1 2 3 ,t t t tS S S S  

the , 1, 2,3i

tS i   are mutually disjoint, and , 1, 2i

tS i   are the target state spaces for

, 1,2iP i  respectively, with 
3

tS being the target state space of draw states (opposing sides 

have equal payoffs); and finally,  is a set of operators,     *, , t tx y p
    acting on the 

state space  with current state t , dependent on the space 2X P , (i.e., if p moves from 

position x to y), producing another state 
*t .  
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The space  therefore contains all state transition operators of the ABG  , 

describing transitions from one state to another when a piece is moved from one location 

to another.  Here, we differentiate using a time dependent definition of placement.  

Operators in  are composed (using conjunction) utilizing the relation operators pR and 

time placement operators :tON P X O  defined as  tON p x    piece p is located 

in x at time (stage) t.  The location space O is defined as the offboard.  Pieces from 

different agents cannot simultaneously occupy the same location (the relinquished piece 

is placed in O) and pieces cannot be placed in a location that is not reachable from its 

previous occupancy location.  The description of the state of  at time or stage t , t , is 

given by evaluating the P -length sequence   t p P
ON p


at t, (i.e.,   t t p P

ON p


 ).  

The space tP   may be viewed as the time resource space for game agents at t. 

It is obvious that an ABG’s pieces are specialized finite state machines (FSMs). 

The goal of iP is to reach a state
3i

t tS S  respectively.  The optimal strategy of  is one 

that has transitions starting from a start state 0

i i

tS  reaching a target state
i i

t tS  for

1,2i  , given that the other side (-i) makes stochastic moves.  The composite state space 

 is a subspace of a Cartesian product involving three components of the ABG  , 

namely : (i) the product of the state spaces of the cells, given by each cell component 

state space
ix for the i-th cell,  (ii) the product of state spaces of each piece given by p

for the piece p , and (iii) the space  : 2 |  statePf X    of possible functions f  
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that map pieces p on x, while in state  (i.e.,    |  is in cell location  at state f x p p x


 ).  

This super-space of possible composite states is expressed as: 

 
 

, |
i

i

i I

x p

i I p f x

f f



 



 

  
  

       
  
  

    (4.50) 

One thus has the possibility inclusion  .  The set of ABGs is partitioned into three 

types or classes: (i) alternating serial (AS) systems in which only one piece can be 

moved at a time and opposing sides alternate, (ii) alternating concurrent (AC) systems in 

which all, some or none of the pieces of one side can move simultaneously and opposing 

sides alternate moves with possible relinquished opposition at the destination of 

concurrent moves, and (iii) totally concurrent (TC) system in which all, some, or none of 

the pieces of both sides can move simultaneously or be relinquished.   

Hypergames are defined as interlinked AC ABGs where pieces and locations are 

linked.  This interlinking then creates a common point spread across linked regimes of 

games.  Trajectories are paths for pieces navigating within these hypergame scenarios.  

These trajectories are represented as strings of symbols 0 1( )( )...( )lcx cx cx taken over the 

alphabet c X where c is a symbol, X is the abstract board of an ABG and l is the length 

of the string.  Additionally,  1, 1p i iR x x   for i I , (i.e., each cell is reachable from its 

previous sequential cell).  Let  , ,p x y l  denote the set of trajectories with the same 

tuple  , , ,p x y l and    0 1, ,..., lP s x x x  to be the set of parametric values of the 

trajectory (string) s labeled above.  Let  L s l  denote the length of the trajectory s.  We 
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label the shortest trajectory in  , ,p x y l as  
 

  
, ,

, , arg inf
p

p
s T x y l

T x y l L s


 .  An admissible 

trajectory of degree k in  , ,p x y l  is the trajectory in  , ,p x y l  which can be divided 

into k substring shortest trajectories. Control grammars formed from these trajectories 

and labeled  , are then used to construct types of trajectory patterns based on rules of 

engagement and movement of pieces.  We give the definition of a control grammar for 

completeness. 

 

Def. A (language) controlled grammar is an 8-tuple  , , , , , , ,T N PRG V V V E H PARM L R  

that extend other grammars with additional controls on the derivations of a sentence in 

the language of those grammars.  Here, (i) TV  is the alphabet of terminal symbols, (ii) NV  

is the alphabet of nonterminal symbols (we use \n TS V V   as the start symbol), (iii) PRV  

is the alphabet of a first-order predicate calculus PR and 

   logical operatorsPRV T CON VAR FUNC PRED , where 

 constant symbolsCON  ,  variable symbolsVAR  ,

 functional symbolsFUNC FCON FVAR  , where FCON are the constant 

functional symbols and FVAR are the variable functional symbols, 

 predicate symbolsPRED  , (iv) E is an enumerable set referred to as the subject 

domain, (v) H is an interpretation of the PR calculus on E, (vi) PARM is a mapping from 

a symbol to a set of variable symbols, : 2VAR

T NPARM V V   , (vii) L is a finite set of 
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labels, and (viii) R is a finite set of productions, which are 7-tuples of the form 

 , , , , , ,k n T Fl Q A B F F  where l L ,Q is a well formed formula (WFF) of PR 

(classical WFFs are logical sentences consisting of atoms and combinations of atoms 

using logical operations), being a condition of applicability of productions which contains 

only variables from VAR belonging to PARM(A), A B  is an expression (mapping) 

called the kernel of production, where  
*

,N T NA V B V V  , k  a sequence of functional 

formulas corresponding to formal parameters of symbols from  T NV V , n  a sequence 

of functional formulas corresponding to formal parameters of symbols from FVAR (non-

kernel parameters), TF L , are labels permitted on the next step of derivation (to be 

defined below) if Q TRUE , (permissible set in success), and FF L , are labels 

permitted on the next step of derivation if  Q FALSE (permissible set in failure) 

(Stilman, 1993).  Note: 
*V denotes the letter monoid (under the operation of string 

concatenation in V) (i.e., the set of possible strings made from symbols in V) , the unit in 

*V is the empty symbol ,  * \V V    and x  denotes the length of the string x.   

 

Derivation results are formed from a finite set from
*

TV  and formulas from n so 

that formal parameters of a terminal symbol ( in 
*

TV ) are given a value from E and each 

symbol f FVAR is matched with a mapping, say  h f .  In a control grammar G, one 

starts with a symbol s and has its parameters assigned maps  h f for all f FVAR .  
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The space L takes on the role of the set of initial permissible productions.   One then 

applies productions from L as a symbol A, are applied to a current string  , entering it in 

some placement. The newly constructed string, A and a new permissible set are thus 

formed.  Derivations for other strings obtained from a given one are independently 

formed thereafter.  In the case of no productions from a permissible set being applicable, 

the derivation of the string is stopped.  If this string only contains symbols in nV (terminal 

symbols) , it then goes into the set of derivation results, otherwise it is discarded.  Denote 

the set of derivation results starting with the frontier string s with respect to G as  G s .   

Production application to the string , is applied in the following manner: one 

chooses the leftmost entry of the symbol A in the string . The production predicate Q is 

then calculated.  If Q F , then FF  becomes the permissible set and the process is halted.  

Otherwise, if Q T , the symbol A is replaced by the string B and all formulas in k are 

computed using the parameters of the symbols of B; those parameters then assume the 

new values computed. The maps  h f , for f FVAR , are computed by using the 

formulas from n and the permissible set becomes TF , thereafter the production process is 

halted.  If a formula from n does not change  h f , it is omitted from the production 

record.  Finally, a language generated by the controlled grammar G, denoted as  L G , is 

the union of all sets that are derivation results of G, so that    
*

T

G

x V

L G x


            
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For a particular state  of an ABG , trajectory patterns generated by  for a 

particular length H, form a language of trajectories for given by
,

H

 and are composed 

specifically of the shortest and admissible degree 2 trajectories of length l H from  .  

Strings 
*

,

H

  formed from 
,

H

 , in turn, form the symbols for a language of zones 

,
H


 for the state  of  .  This language of zones 
,

H


 then defines LG zones which, in 

turn, are the building blocks for defining LG strategies strategies that define the 

survivability of pieces transferring from one location jx , to a final location of interest tx of 

X in the ABG  .   

LG zones can be viewed as networks of trajectories on X that define the stratagem 

of the agents manipulating their pieces, (i.e., the sequence of strings representing agent 

action sequences). The set of LG zones is considered a higher level language while the 

language of trajectories is a lower level language in the scheme of defining viable paths 

for pieces.  LG zones can also be represented as strings of symbols 

   , , ... q, ,
p qp qh p t h t   , each parameterized by the pieces p P , the trajectories for 

them, p  , and time allocations for traversing those trajectories, 
p

t .  Furthermore, 

target states are formed based on large values of an overall value differential between 

agents such as      
1 2p P q P

m v p v q
 

   .  If p O  (offboard) in state  , then

  0v p  and depends on the piece dynamics and rules of engagement for reentering the 

board from the offboard with some small nonzero value.  Reachability criteria and sets of 
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the board X of  are defined in the following manner: let 
, :x p X Z   define a map of 

the board X relative to the location x and piece p in  .  Consider next a family of 

reachability sets from the point x, defined as: 

 

 

  1,
, ,

| x, 1,                                1

| y, 1, \ ,  0

p
k

k lx p
p x p x p

l k

m P R m k

M
m P R m y M M k



   
 

     
  

  (4.51) 

 Then define  

     

   

,

, ,

,

,     ,

2 ,   \ ,

0,     \

k

x p

k

x p x p

k

x p

k y M

y P y P x M

y x P M



 



  




  (4.52) 

as the number of steps from x to y for piece p.  ,x p  is a symmetric distance and a metric 

on X for each p if pR is, otherwise it is superadditive in X.  One can symmeterize ,x p  by 

defining an averaged (or weighted) symmetrization (Jensen-Shannon divergence):  

 
   , y,

,
ˆ

2

x p p

x p

y x
y

 



 , invoking a metric on X for each p.  The ultimate result of 

the LG approach to constructing solutions for games is the following: the shortest 

trajectories from x to y of length l for a piece p on location x exist if and only if 

, ( )x p y l  and 2l P .  Furthermore, if pR is symmetric, then all the shortest trajectories 

of  , ,p x y l  can be generated by the control grammar of shortest trajectories of length 

1, 1

, .  If pR is not symmetric, then the use of the symmetrization map ,
ˆ

x p can define 



 

290 

 

 

the condition above as ,
ˆ ( )x p y l  .  The construction of these shortest trajectories implies 

the construction of the requisite LG strategies for  -based hypergames.  

Trajectories are pruned by a criteria that defines a rule threshold such as 

smoothness in which the trajectory path from the start point to the end point changes 

direction minimally in the geometry of X.  The model of strategies is formalized as a 

hierarchy of formal languages utilizing a class of generating grammars called the control 

grammars that employ semantics of the game in order to manipulate the strings of 

symbols that represent the game structurally.  The geometry of the state space is 

manifested by each state representing an ABG with the same board X and pieces P in 

different configurations.  

Inceptions may generalize LG hypergames in the following manners: (i) multiple 

agents with co-opetitive characteristics so that an ABG  and  -induced hypergames 

may have n agents (and their hyperlinked inception level personas) with , 1,2,...,iP i n  

mutually exclusive pieces respectively, and the sequence of starting and target states 

   0 1,2,..., 1,2,...,
,i i

ti n i n
S S

 
respectively, with j-wise combinations of draw states in payoffs, 

  
1 ,..., ji i

S  for all 1,2,...,j n , (ii) the boards X may have non-classical geometries and 

topological properties of very general logic spaces such as quantum-gravity LQG 

spinfoams or superstring dimensions, and finally, (iii) the general stochastic and 

nonclassical probabilistic possibilities of a GTU-based constraint will form more exotic 

rule structures such as paraconsistent and modal logics generating non-classical trajectory 
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languages for LG stratagems.   LG hypergames can be redefined in terms of agents and 

their pieces and states of existence from different inception teams being hyperlinked to 

their different inception level persona and avatar existences, and (iv) quantum, quantum-

gravity, and other exotic GTU-based grammars can replace the grammar-based approach 

of LG construction of strategies for corresponding quantum, quantum-gravity, and GTU-

based strategies respectively.  This would be an interesting new area of research for non-

classical versions of LG grammars.  This study earlier reviewed quantum pushdown 

automata as a model for each inception level.  The corresponding quantum grammars 

shown initially in Crutchfield and Moore (1997) can be gleamed upon to form a basis for 

quantum LG grammars via the mechanisms of the LG construction. 

Morphogenetic Approaches 

Inceptions may involve massive numbers of agents depending on the social 

context of the game situation.   For example, tactical warfare games may involve large 

numbers of agents and subgroups within the warring sides.  Colonies of insects in co-

opetition with other species for resources in a given landscape dwarf the sizes of typical 

human conflicts.  In one of the most ostensible examples of emergent computation 

mimicking natural processes, ant colonization optimization (ACO) utilizing pheromone 

minimum cost paths on graphs, has become a viable large-scale multiagent computational 

tool for solving optimization problems (Dorigo and Stützle, 2004).  The synergy between 

the local search power of natural ACOs and human reasoning leading to methods 

preventing local loops or optima, presented the more adaptive (simple) S-ACO 
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algorithms for global searches.  More generally, evolutionary computation has led to the 

development of algorithm classes that utilize this synergy to produce super-emergent 

spaces of adaptive processes, solving some combinatorially explosive problems.  

Morphogenesis, in particular, being the emergent phenomena of convergence of an 

organism base of DNA/RNA to well-formed organs and bodies, points to new 

computational power in the tradition of evolutionary processes and computation.  

Sheldrake (2009) and others have generalized this process to higher level fields of 

development called morphogenetic fields.  Additionally, artificial logic systems have 

been axiomatically developed based on pure natural processes (Brenner, 2008).  

In a seminal work on race segregation, Schelling (1969) developed a simulation 

using game-theoretic utilities and multi-agent models with cell neighborhoods and 

thresholds for happiness – happiness indices ( 0 1  ) regarding an individual’s 

propensity to be content with a proportion of like-minded or looking neighbors in their 

respective neighborhoods.  In a recent update using Schelling’s model of segregation, 

Barmpalias, Elwes, and Lewis-Pye (2013) refine what properties of local segregation 

present for global segregation patterns using Schelling’s happiness threshold as a 

dynamic parameter (i.e., as 1  ).  Counter-intuitive results were shown.  For example, 

even for high happiness thresholds, global segregation patterns reach an upper limit.  

While the model in these studies is somewhat toyish since limited notions of happiness, 

neighborhood geometry (1-D arrangements of agents), and social interaction dynamics 

are used as well as limited periods of evolution, (i.e., as soon as a certain level of 

segregation is reached, the simulation is ceased), the results point to Markov process 
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cellular multiagent models as viable patternizers for computational behavioral patterns.  

In particular, we may adopt this model with more realistic and general parameters spaces 

for games.   

We are interested in the more general inception game and so two coalition types 

A  and B  (inception and inceptee teams) are used in place of race (or ethnicity).  Instead 

of proximity locations (i.e., geographic neighborhoods), we develop a K-dimensional 

profile  a

a i i K



   for an agent a A B , consisting of risk profiles (risk aversion vs. 

aggressive on spectrum and with respect to risk value, payoff or utility intervals (could be 

thought of as income status, cost of real estate, net worth), resources (i.e., both internal 

and external - educational status, family wealth, network size, resilience, ), and 

intangibles (non-decision making abilities).  Happiness thresholds,  are then the lower 

bound for an agent to accept being in a profile, where a proportion  of agents within that 

same profile neighborhood (profile characteristic distance of  ) are from the same 

inception team.  We may now define a general (discrete) probability divergence  between 

two agent profiles, neighborhoods, and thresholds, 

   log i

i j i

j

a

a a a

a

p
D p

q

     (4.53) 

where  ,
i ja ap q  are the pdfs of the respective agent profiles.   The sum is replaced by an 

appropriate integral in the case of continuous distributed profiles for agents.  If the agents 

of an inception game are quantum-like, then an analogous version of (4.53) is the 

quantum relative entropy,     tr log log
i jq a aD p p q       , where p and q are the 
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density operators on a Hilbert space for ia  and ja  respectively, and tr is the trace 

operator.  The generalization of this divergence to quantum-gravity depends on one’s 

approach either through LQG, superstring, or pregeometries.  Entanglement of agents 

introduce the concepts of holographic and Wald entropies in superstring theory which 

would define a cross entropy leading to the analogous KL-divergence (Myers, Purhasan, 

and Smolkin, 2013).  For LQG, a relative entropy may be constructed using the quantum 

causaloid approach of Hardy seen in more detail in Appendix D.  In this study’s most 

general approach, a divergence distance between two GTU constraints, lG  and kG is 

defined by generalized GTU constraint distributions lg  and kg  respectively, 

       tr log log
i jg a a g i i jD g g g    

 
  (4.54) 

where trg is a generalized trace operator acting on the space of GTU constraint 

distributions (Sepulveda, 2011).  As before, a symmetrization of(4.54) is done by a 

weighted Jenson-Shannon divergence: 

        1
i j i j j i

s s

g a a g a a g a aD D D             (4.55) 

for 0 1  .  More general versions of divergences of which the KL-divergence is a 

special case of are available through the family of weighted Csiszar-Morimoto-Ali-Silvey 

f-divergences, of which weights in the divergence are defined by a twice differentiable 

convex function f with  1 0f  and  ' 1 0f  and weight function w (Csiszar, 1963; 

Kapur, 1994).  In terms of our more general GTU structure, this divergence is defined as, 
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  , tr
i j

f w i
g a a g j

j

dg
D wf dg

dg

  
      

   

  (4.56) 

 The Jenson-Shannon symmetrization  , ,
i j

f w

g a aD   , of (4.56) follows from (4.55).  

When f is of the form; 

2

ji i

j

dgdg dg
f

dg d d 

  
      

   

, where v is an absolutely continuous 

probability measure with respect to ig  and jg , f

gD is a metric on the space of pdfs 

defined on the agent profile space.   One may then define metrizable geometries for 

computing profile neighborhoods. 

Agent ia  is within neighborhood of agent ja if   
i ja aD    . A  nbhd of 

agent a  is defined as     c | c , a cN a A B D      .  Let N A B  be the total 

number of agents.  Let  be the probability that a A .  Agent a  will be  ,  happy if 

 N a

N


 .  If agent a  is not  ,  happy , then it may exchange teams with an 

agent b from the other team who is also not  ,  happy  This exchange rule assumes 

that the threshold criteria has the same intrinsic value for each agent.  Furthermore, each 

agent may have different happiness thresholds a .  One can define an exchangeable 

tolerance mapping between happiness indices between agent.  In this way a mapping 

from one threshold value a for agent a  to another b for agentb are happiness equivalent.  

In the same manner that pain thresholds may be standardized to a certain degree, 
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happiness equivalence is a homogenizing transformation of happiness from one agent to 

another (pairwise).  Multi-wise equivalence becomes more complex since a 

triangularization must occur between agent happiness thresholds (i.e., happiness 

thresholds will differ in equivalence depending on the participating equivocating group of 

agents). Let  :a a af   be such a mapping for an agent a from its happiness threshold 

to the series of thresholds for all other agents a .  Then an agent a A who is not 

 ,  happy will exchange teams with an agent b B  who is not   , a af  happy. 

 Patterns of defection or in the case of Schelling, neighborhood segregation, can be 

seen as agent movement between teams and hence of inception game values and payoffs 

since agent defection (including all n-agencies ending in a final defection to one team or 

another where 0-agency means no defection or total non-covert loyalty) will mean a shift 

in social power as defined earlier for inception games.  If total or nearly total segregation 

or team defection is reached, then the inception becomes inevitable or inevitably 

prevented, depending on the team agents doing the dominant defection.  The significance 

of Barmpalias, Elwes and Lewis-Pye’s study to inceptions is that, at least in the simple 1-

D profile (geographic proximity) case for neighborhoods, there arose five regions of 

behavior: for a solution of  
1 2

2 21
1

2




 


 

   
 

, the regions are (i)  , (ii)  , 

(iii)
1

2
   , (iv)

1

2
  , and (v)

1

2
  .  For sufficiently large number of agents n ,

n  , some counterintuitive patterns emergent.  For example, in region    , if
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0  , then for sufficiently large , the probability of a randomly chosen unhappy agent 

swap is  .  On the other hand, in the region
1

,
2

 
  

  
  

, there exists a constant d such 

that  ,n n  , the probability that a randomly chosen agent is in a run of swaps of 

length
w

de , in a final configuration, is 1   .  In region
1

2

 

 
 

, there exists a constant

1c  such that 0  , the probability that an agent chosen uniformly randomly will 

belong to a run of swaps that is 
2 , in the final configuration, is c .  In region

1

2

 

 
 

, for sufficiently large  that
1

2 1










, then with probability 1,as n  , 

for a given initial configuration, the event of complete segregation eventually occurring 

has probability 1.  In the last region, if the happiness index dictates at least a majority of 

like-agents within a large enough defined profile neighborhood, complete segregation 

eventually occurs with probability 1.  In an inception this is equated with eventual social 

power segregation and little if no inception penetration or coercion, (i.e., sufficient 

integration arising from initially small segregation happiness with 
1

2




 and

n    means essentially that the probability of no inception converges to 1).  So, 

this may be considered a situation in which well intentioned convergence to 

harmonization with the caveat of an implied perpetual small majority eventually still 

produces no inception.  The only viable condition on happiness for potential inception 

(integration), is the explicit condition of giving up the  majority position.  This begs the 
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question, “why would an agent relinquish the intent (happiness) of local common 

pluralism in the midst of covert inception intentions?”  This is the most natural 

psychological profile of n-agencies, eventually working among like agents with the 

exception of existentially being on the opposite team. 

Game Categories and Topoi 

All games may be expressed in a more powerful and abstract form known as 

categories and topoi.  Topoi generalize the concept of point-sets topologies and are 

specializations of categories which, in turn, generalize mathematical objects, a higher 

order mathematical abstraction alternative to model theory constructs and mathematical 

logic (Lawvere & Schanuel, 1997).  Appendix E gives a brief review of categories and 

topoi.  Here, we closely follow Vanucci (2004) in reviewing general game forms that will 

be expressed as categories of Chu spaces as the most general mathematical object for 

games.  For brevity and immediate relevancy, we will discuss coalitional game formats 

only as inceptions are being presented a coalition games, albeit recursive coalition games. 

 

Def. An effectivity coalition game form (ECGF) is a tuple  , ,G I P E where I is the 

index set of agents,  P is the set of payoff (outcome) functors, and 2: 2 2
IIE   is a 

generalized effectivity functor (GEF). 

 

GEFs map subsets of agents to subsets or collections of subsets of agents and 

satisfy the conditions, (i)  E    , (ii) S  for any S I  , (iii)  P E S  for any
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,S I S   , (iv)    2 \PE I   .  More general forms of ECGFs are given by social 

situation forms, 

 

Def. A social situation form (SSF) is a tuple  , ,G I P  where I is the index set of 

agents,  P is the set of payoff (outcome) functors, and    , 2 ,II P P I P   

where  , 2 2I PI P    denotes the set of position forms on  ,I P . Furthermore, 

     , , , , , : , ,G A U x T B x A U S U T    denotes the inducement correspondence 

(Greenberg, 1990). 

 

The set of GEFs are contained (specializations of) in the set of SSFs.  We now define 

Chu spaces as they will be the most general form of spaces that will describe (coalition) 

games by categories. 

 

Defs. Let  A be a category with finite products,  K Ob A  (categorical objects of A). A 

Chu space over K is defined as the tuple  , ,X Y �  where  ,X Y Ob A  and

 hom , ,
A

X Y K� .  Additionally, a Chu-transform from a Chu space  , ,X Y �  to 

another Chu space  * * * *, ,X Y �  is a pair of functors (A-morphisms), 

   * *hom , ,g hom Y,YA Af X X  ,  ,f g  such that    *

* id idXY
f g  � � . 
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Results. Let A be a category with finite products and  K Ob A . Let

   Chu , ,hom, ,A K O id  where O is the class of all Chu spaces (induced from A), 

 *hom ,  is the set of all Chu transforms from  to * for any *, O ,

 id id ,idA A

X Y  for each  , ,X Y O � and  * * *,f f g g    for any pair of 

Chu transforms    *, hom ,f g    and    * * * *, hom ,f g   , then 

 Chu ,A K  is a category. In particular, let Poset denote the category having the class of 

all partially ordered sets as objects and the class of order-homomorphisms 

(antisymmetric, transitive, and reflexive binary relation) as morphisms, K a set and 

 ˆ ,K K  . Then  ˆChu Poset, K  is a category.  

 

Finally, we arrive at the category representation of games in the form of ECGFs. 

 

Result. Let  ECGFECGF Ecgf ,hom , ,id where Ecgf is the class of all ECGF games, and 

for any  , ,e I P E ,  * *M,Q,e E Ecgf  , 

 

      

    
      

Poset

*

ECGF Poset

*

, : hom 2 , , 2 , ,

hom ,       hom 2 , , 2 , | for each  andB 

I M

Q P

f g f

e e g S I Q

B e f S g B e S

   
 
 

      
 

   
 

         

then ECFG is a full subcategory of  Chu Poset,2 . Here 2 represents the Boolean set



 

301 

 

 

 0,1 .  

 

Conjecture.  Let  SSF Ssf ,hom , ,SSF id  where Ssf is the class of all SSF games, and 

for any    * *, ,M , , ,M ,e I P e K Q SSF     

 

      

    
      

Poset

*

SSF Poset

*

, : hom 2 , , 2 , ,

hom ,       hom 2 , , 2 , | for each  andB 

I K

Q P

f g f

e e g S I Q

B e f S g B e S

   
 
 

      
 

   
 

  

then SSF is a full subcategory of  Chu Poset,2 .  

 

Coalition games in ECFG or SSF form can then be classified as full subcategories of the 

Chu space category  Chu Poset,2  induced by the set of partially ordered sets.  In 

particular , an inception game is a (recursive) SSF with social structure as depicted by a 

GGT game.  Each recursive level in inceptions is a coalition subgame.  Hence, we may 

apply the subcategory mapping to  Chu Poset,2 for each recursion level.   

Recall that an inception game was eventually expressed as a generalized GTU-

based recursion game    , , , , ,i i L
H A S G G

   .  Then  may be represented as a 

recursion or series of subcategories of  Chu Poset,2 or a generalized set category based 

on  Chu Poset,2  given by an n-category which is induced or enriched n times by

 Chu Poset,2 and labeled    Chu Poset,2n n  where n is the number of levels 
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generated in an inception game See Appendix E for a review of higher order categories 

via n-categories and their generalization (n,r)-categories.  If, on the other hand,   is 

defined as a simple Cartesian product of n copies of  Chu Poset,2 , then the product 

category    Chu Poset,2PR
n

    endowed with component-wise projective mapping 

from to each copy of  Chu Poset,2  representing an inception level is the appropriate 

category.  See the end of Appendix E for details on the category product.  In order to 

convert these categories to topoi, a truer representation of generalized point sets and 

proper set operations must be present.  In particular by satisfying the conditions of 

Giraud’s axioms for a category, a Grothendieck topos is created (Giraud, 1972).  Hence, 

either  PR   or  n   may then be converted to a Grothendieck topos by the imposition 

of those conditions given in Giraud (1972). 

The category-theoretic structure of  PRC  or  hC  is essentially morphism-free.  

No mappings or transofmrations from one game object to another were introduced into 

these game categories.  How does one, in general, tranmsform from one game structure to 

another, in an invariant manner, (i.e., games that can be transformed to each other 

without loss of information, strategy formation, or dynamics)?  Games are inherently 

highly dynamic and computationally complex for larger numbers of agents, strategies, 

payoff dynamics, and state dynamics.  In the case of the topology of 2x2 games of 

Robinson and Goforth, these transformations may be envisioned as swaps on game 

colored tiled squares.  Swaps are transformations based on game components such as 
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payoff families, equilibria families, symmetry among agents, and number of dominant 

strategies.  Morphisms can then be based on these spaces of game components.  Hence, a 

more general game morphism caould be reflected by a multi-dimensional morphism from 

the space of payoff outcomes for agents, dominant strategies, equilibria, and symmetry of 

agents.  Half swaps are those swaps that conclude in ties between games as payoff 

resultant preferences.  These morphisms essentially induce orderings of games.  Game 

graphs can then be developed based on these game order preferences (Bruns, 2010).  The 

case of game morphisms will larger games with complex dynamics and interactions is far 

from generalized from the 2x2 game spaces.  When larger games can be partitioned into 

linked 2x2 subgames, subgame perfect strategies strengthen a kind of space of linked 

morphisms where each full game morphism can be decomposed into smaller 2x2 subgane 

morphisms as discussed above. 
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Appendix C: Zadeh’s Generalized Theory of Uncertainty 

Zadeh (2006) has given a proposal for a generalized theory of uncertainty (GTU) 

in which notions of uncertainty including: (a) probabilistic, (b) possibilistic, (c) veristic, 

(d) usuality (fuzzy probability), (e) random, (f) fuzzy graphic, (g) bimodal, and (h) group 

types of uncertainty are modeled through a generalized constraint model.  

Complementary to this, a generalized constraint language (GCL) consists of all 

generalized constraints coupled with the rules for qualification, combination, and 

propagation.  A generalized constraint (GC) is a triplet of the form ( , , )X r R  where X is a 

constrained variable, R is a constraining relation, and r is an indexing variable which 

identifies the modality or type of constraint semantics.  The index list consists of the 

following pneumonic: r blank , possibilistic, r p , probabilistic, r v , veristic, r u , 

usuality, r rs , random set, r fg , fuzzy graph, r bm ,bimodal, and r g , group 

variable.  A formal uncertainty language such as a GCL calculates precisiations (the 

mapping of a vague measure into a precise number) more readily than formalized logics.  

Constrained variables, R can take the form of: (a) a general m-vector, (b) a proposition, 

(c) a function, (d) a function of another variable, (e) a conditioned variable, (f) a 

structure, (g) a group variable, or (h) another generalized constraint.  Bi-valent 

conjunction, projection, and propagation operators, c , proj , prop respectively act on 

two (possibly different) GC objects, 
1 1 2 21 2(  _  ), (  _  )k j k jX is i R X is i R to generate a third 

(possibly different) GC object 
3 33(  _  )k jX is i R .  

A GC object, ( , , )g X r R , is associated with a test-score ( )gts u which associates 



 

305 

 

 

an object u (which the constraint is applicable to), a degree to which u satisfies the 

constraint.  The test score defines the semantics of the constraint that is associated with g.  

The value of ( )gts u  may be a point in the unit interval,  0,1 , a vector, or other 

mathematical structure such as a member of a semi-ring, lattice, poset, or bimodal 

distribution.  The relation, R from g is allowed to be nonbivalent, as in a fuzzy 

equivalence.  In this way, a GC generalizes a fuzzy set and so, a GCL can lead to a 

generalized fuzzy system of generalized constraints.   

Zadeh presents a precisiation natural language (PNL) as a means of assigning 

precise meaning to a proposition drawn from a natural language (NL) through a GC.  The 

PNL is then a mapping, :PNL p g  from a proposition, p to a GC, ( , , )g X r R .  

Hence, information, in general, is representable as a GC because a proposition is a carrier 

of information, being a potential answer to a question.  Let S be a system.  Let S
 be the 

space of all propositions in S, S the space of GCs in S, and ( )PNL S , the mapping 

assigned to a PNL for S.  Then ( )PNL p S  for a precisiable proposition p in S.  Denote 

the space of precisiable propositions of S by
'S .  In general, 

'S S  for NL systems.  Let 

GCLS be the space of all GCs of S.  Then
GCLS is more expressible relative to S, than a first 

order logic, modal logic, Prolog, and LISP is to S, if S is a NL.  Because quantum logics 

can be derivable as a family of subsets of fuzzy probability structures (using Lukasiewicz 

operators), a GCL can be formalized for it, though quantum probability may be framed as 

a generalized probability theory as well (Cohn, 2007).  The importance of this is that any 

quantum logic (logical system), L, with an ordering set of probability measures, S, are 
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isomorphic (representable) in the form of a family of fuzzy subsets of S, ( )S , satisfying 

certain conditions, including the use of Lukasiewicz operators instead of Zadeh’s 

operators on fuzzy sets (Pykacz, 2007).  Hence L is representable by a GCL.  In this 

sense, quantum logics are special cases of (and isomorphic to) fuzzy probability logics 

and so are in the realm of a GCL representation.   

Does this GTU represent a kind of generalized logic in the taxonomy of algebraic 

logics? In other words, can the GTU transcend a spectrum of the algebraic hierarchy of 

logics, which include fuzzy and quantum logics, and of other duals to these, notably 

referred to as dual-intuitionistic logics or paraconsistent logics? Paraconsistent logics are 

logic systems that formalize inconsistent nontrivial logics in the sense of the rejection of 

the principle of explosion (noncontradiction), the premise that anything follows from 

contradictory premises (Béziau, 2000).  The principle of explosion is as follows: for a 

proposition p, and an arbitrary claim A, 

 (premise)

 (conjunctive elimination)

 (weakening for any A)

 (conjunctive elimination)

 (disjunctive syllogism)

 (conclusion)

p p

p

p A

p

A

A









 

Paraconsistent logics overcome Gödelian limitations, i.e., incompleteness of axiomatic 

systems.  In addition, because they are accepting of the truth or falsehood of both a 

premise and its negation, they are flexible in overcoming other seemingly paradoxical 
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physical theories such as the quantum nature of long range gravitational influences or 

macroscopic and mesoscopic entities. 

 Rough set theory is a concept of the uncertainty in the coarseness of sets.  

Whereas, fuzzy sets discern uncertainty in the vagueness of sets.  While fuzzy set 

uncertainty is expressible in algebraic logics – Heyting algebras – and hence expressible 

as PNLs, rough set approximation spaces can be expressed as Pawlak-Brouwer-Zadeh 

lattices which can be expressed as types of distributive De Morgan lattices (Cattaneo & 

Ciucci, 2002; Dai, Chen, & Pan, 2006;  Greco, Matarazzo, & Slowinski, 2011).  These 

lattices can then be expressed as logical algebras (Heyting Wajsberg algebras) with 

PNLs.  The corresponding generalized constraint  , ,R g gg X r R where gr  is the 

placeholder index for rough set uncertainty, can then be categorized as a GTU 

representation of rough set uncertainty (with respect to set boundary approximations).  

 Dempster-Shafer belief function theory first derived from a series of papers, 

Dempster (1967), Shafer(1976), and Schum (1994) and the intuitionist probability theory 

as detailed in Narens (2003) are considered bimodal distributions of probabilistic type 

and are categorized under the index bm.  The details of the space of the bm index of 

uncertainty distributions fall under three subtypes and are given in Zadeh (2006). 
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Appendix D: Causaloids and Quantum-gravity Machines 

Causaloids are operationally constructed as a potential means of building a 

physical theory encompassing both the probabilistic calculus of quantum theory (QT) and 

the indefinite causal structure of general relativity (GR).  The treatise from Lucien Hardy 

in a series of papers will be followed closely in this discussion (Hardy, 2005, 2007, 2008, 

2008b).  Causaloids are an attempt at building a framework for construction of a 

mathematical physical theory that correlates with recorded data, while handling situations 

when an indefinite causal structure is present or when a time sequential evolution is not.  

In GR, causal structure is dynamic because of the nature of the spacetime metric and its 

dependence on the gravitational force from the distribution of mass.  In QT, if time 

cannot be handled sequentially in the evolution equations, quantum uncertainty ensues.  

Any theory of quantum gravity (QG) must then, in all likelihood, be capable of handling 

indefinite causal structures while retaining a consistent probabilistic calculus.  

To this end, consider two spacetime regions in the universe given by R1 and R2 

which are spatio-temporally disconnected.  One would like to posit a probabilistic 

statement about the region R1 conditional on information from R2 .  The current 

approaches to QG via path histories, such as LQG spinfoams, M-Theory, evolutional 

equations, or local infinitesimal changes via differential equations fall short in this 

scenario because of the disconnect in spacetime probabilities.  Spacelike separate regions 

dictate that correlational operators should be tensor products, whereas, temporal-

sequential regions should use direct products, .  For the causaloid formalism, a third 

kind of product, called the question mark product will be introduced.  It is given by the 

A B

AB



 

309 

 

 

notation,  where C is a causal switch operator that indicates either the 

tensor or direct product (blank) depending on the causal structure of the regions.  Note 

that ? remains a linear operator.  Which product to use is therefore dictated by the causal 

structure of .  In the case of probabilistic theories, such as quantum probability, 

with adjacent causality, a reduction in the information needed to infer the state of 

compound systems is present due to correlation relationships.  This is referred to as 

second 1evel physical compression.  The fundamental question that causaloids attempt to 

answer are the probabilistic propositions of the form: 

  (5.1) 

where is an observed measurement (observable) of a physical entity  made in Ri and

is some action performed in Ri., i.e., some control parameterization of the 

measurement device.   

A topological assumption is made about spacetime regions R.  Each region R may 

consist of the union of many elementary regions and composite regions consisting of 

more than two elementary regions themselves, .  An elementary region in spacetime 

is a simple region that may not be operationally reduced in terms of the measurement 

devices.  Let denote the space of elementary regions in a spacetime universe.  For the 

purposes of this paper, may be planck-scale cells or pixels in a discrete LQG-spinfoam 

or planck-scale computer (PSC).  To standardize operations on , attach to each region 

R, a set of vectors (operators), and define the causaloid product, by: 

 ?D B C DCB



1 2R R

1 1 2 2
( | , , )R R R Rp X F X F

iRX

iRF

 iR







( , ) ( )
R Rx Fr R 
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  (5.2) 

For a composite region, , through the causaloid product, , the r vectors of the 

elementary regions would built the r vectors for the composite.  Crucially, 

is well-defined where: 

  (5.3) 

and the sum is over all possible observations made in Ri, consistent with the action

.  Here, 

  (5.4) 

Now consider the collection of data that will be utilized to form a probability 

statement about the regions.  Let the data be a collection of triplets , where x is 

the location of the observable, Fx is a parameterization (knob control setting) of the 

measurement operator (apparatus), and sx is the outcome of the measurement.  Next, 

consider a temporal manifestation of data collection via a series of probes in space.  Let 

the quadruple be the collection of data made by probe n at 

time ti of the observable at location x with outcome sn,x, using controls Fn,x.  The series 

represent the time delays seen by probe n of the results from m other probes.  For 

each time slot ti and probe, n, di,n is recorded.  At the end of the experiment, the series 

( , ) ( , ) ( , )( ) ( ) ( )
R R R R R R R Ri i i j i i j i

X X F F i j X F i X F jr R R r R r R

    

i
i

R R 

1 1 2 2
( | , , )R R R Rp X F X F  ||v u

( , ) ( , )

( , ) ( , )

( ) ( )

( ) ( )

R R R Ri i j j

R R R Ri i j j

R j

X F i X F j

Y F i X F j

Y

v r R r R

u r R r R





 

 

jRY
iRF

1 1 2 2
( | , , )R R R R

v
p X F X F

u


( , , )x xx F s

   ,

, , ,
,

, , , ,n m

i n i i n x n x
i n

d t t n F s
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would have been recorded.  Now consider a repeated experiment in 

which several controls,  are used where E is the number of experiments 

performed.  This would be cosmologically problematic, but there are viable alternative 

setups to this thought experiment.  Before showing this, we procede to define the 

structure of a causaloid which will determine the causaloid product and r vectors for 

regions.  The series of data, , which Hardy refers to as card stacks, 

one card per , is divided into those which are consistent with a particular 

parameterization, F.  For simplicity, this subset of cards is denoted by F.  For any 

particular run of the experiment, say X, then where V denotes all possible 

cards (experiments).   

Denote to be the region specified by the set of cards in V consistent with the 

condition (measurements in ).  Let Rx be the elementary region consisting only 

of the cards in V with x.  Regions are then spacetime entites where local choices for 

measurement (action) are taken.  With this understanding, the term means , 

that is, the cards from a run stack X that belong to the region .  Define the procedure 

or action , as the cards from F that belong to .  The pair now 

defines the measurement result and action taking place in the region .  For notation 

sake, one can label the observations taking place in as .  One now returns 

to the fundamental problem of calculating the probabilistic propositions given by (5.1).  

 , ,
, 0,1,...,i n i n

d i N

 
,

, 1,2,...,
n x

eF e E



 , ,
, 0,1,...,i n i n

d i N

,i nd

X F V 

R

x

RX X R

R

RF F R R ( , )R RX F

R

R
RY Y R
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Since this is a probabilistic statement, one may inject a Fisherian (frequentist), 

Kolmogorovian (axiomatic calculus), Bayesian (conditioning calculus), or other notions 

of probability calculus in these definitions over regions.  The point of departure for this 

paper would be to inject a more general approach to intuition and information transfer, 

that is, a notion of generalized fuzzy logic from GTU (Zadeh, 2005).  For the purpose of 

brevity in this review, the more powerful version of a causaloid, the universal causaloid 

will be constructed here.  In this particular version of a causaloid framework, repeating 

experiments will not be necessary for the inference needed to calculate probabilistic 

propositions. 

In classical statistical approaches, repeating experiments are the calculus for 

constructing robust estimators of the parameters of the underlying probability densities or 

constructs of the phenomena under investigated.  However, in the environment of the 

universe, resetting the clock to repeat the experiment of the probing bodies illustrated 

before as the means of data collection is problematic.  In this review of causoloids, two 

categories will be viewed.  The first will be with respect to repeated trials of 

measurements.  The second will be a notion of universal causaloids where repeated 

experiments are not taken.  Instead a larger deck of observations will be made and the 

metric for measuring the truth of a probabilistic proposition will be changed to 

approximate truth.  The first kind of causaloid will be reviewed first.  Consider two 

composite regions of spacetime, R1 and R2 with corresponding experiment controls 

(procedures), F1 and F2.  Probabilistic statements (propositions) of the form: 
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  (5.5) 

will be the center of inquiry for causaloid frameworks.  This is simply the probability of 

observing the outcome Y2 using procedure F2 in region R2 given that Y1 was observed 

using F1 in region R1.  Statistically, this is a likelihood function.  However, because the 

regions involved may be spatio-temporally vastly separated with no ordered or connected 

causal structure, its calculation would not be well defined.  A deeper and more general 

formulation must be developed for such physical cases.  One must then find if a 

proposition is well defined (w.d.) and if so, find out how to calculate it.   

Consider a sufficiently large region, R covering most of V.  Next, assume that 

some C is a universal condition on the procedures,  and outcomes,  respectively 

in the region, such that the probabilities, are w.d.  This guarantees the 

existence of these likelihoods in a sufficiently large portion of the computable universe.  

Assuming the existence of C, the likelihood functions will simply be abbreviated as

and are w.d.   Applying reductionism to this large region, three kinds of 

physical compressions will be defined that will help in forming the calculations for the 

likelihood computations.  First level compression will apply to single regions.  Second 

level compression will apply to composite regions.  Finally, third level compression will 

be applied to matrix constructs that are manifested out of calculations pertaining to first 

and second compressions.   Define a shorthand for likelihoods, using the notation, 

for each possible pair in the region R1: 

  (5.6) 

2 1 2 1( | , , )p Y Y F F

\V RF \V RY

\V R ( | , )R Rp Y F C

( | )R Rp Y F

1 11 ( , )R RY F 

1 1

1 1 1 1 1\ \( | )R R R R R Rp p Y Y F F
 

 
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In a physical theory that is governed in part by a probability calculus, the set of possible

can be reduced in size by relations, so that a minimal vector of suffices in 

expressing itself and without loss of generality, in a linear relationship, 

  (5.7) 

where the state vector, is given by a minimal index set, : 

  (5.8) 

is referred to as the fudicial set of measurement outcomes. Since in a probability 

manifold, probabilities are linear, a linear relationship in the above compression is most 

efficient. may not be unique in general, but since it defines a minimal set, there exist a 

set of  linearly independent states in .  The first level compression for region R1 is 

then represented by the matrix: 

  (5.9) 

where is the li
th

 element of the vector .  Compression in the matrix is 

manifested by the degree of rectangularity (lack of squareness), a flattening of the matrix. 

 Second level compression is shown for composite regions.  Consider two regions 

R1 and R2 .Form the composite region, and express its state: 

1
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  (5.10) 

It has been shown that the second level fiducial set, can be chosen such that 

.  Further, one can express the likelihoods as: 

  (5.11) 

Then the following must hold: 

  (5.12) 

since there exist a spanning set of linearly independent state elements in .   

Now define the matrix representation for second level compression of .  

Let 

  (5.13) 

where is the element of the vector .  One can then express these 

components as: 

  (5.14) 
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and in this way calculate the likelihoods for the composite region from those of each of 

its constituent component regions.  This is the second level compression above and 

beyond first level compression of simple regions for the case of a composite region.  One 

using this definition of second level compression to define the causaloid product, : 

  (5.15) 

Because this definition generalizes completely to higher level composite regions, the 

second level compression matrices are defined analogously for n-region composites by: 

  (5.16) 

Now consider a master matrix that consists of all levels of lambda matrices for 

elementary regions, Rx, for a set x, where is the set of x in the region R: 

  (5.17) 

In a consistent probabilistic formalism for a phsyical theory, these -matrices will in 

turn have a relationship among each other.  These relationships, along with a rule set for 

calculating other -matrices based on these relationships, can be expressed as a set of 

action operators, .  Let denote this reduced set of -matrices based on the 

relationship reductions.  Then the causaloid is denoted by the pair .  Reductions 

by the third level of physical compression are manifested by identities that express higher 
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order -matrices in terms of lower order ones.  Examples of -matrix set reductions are 

in the following two scenarios: 

(1) When the fiducial set for the composite region is separable (expressable) into (as) 

a cartesian product of the fiducial sets of the components, i.e. 

                  (5.18) 

(2) When higher order -matrices can be computed based on pairwise 2-index  -

matrices: 

      (5.19) 

Next, consider the case where ensembles of experiments are limited or were one 

large data set card is instead collected.  One considers this case because effects are not 

preserved as these repeated experiment processes are not invariably reversible, so that an 

experiment performed later would be run under very different conditions regardless of 

how hard one tries to preserve the cosmological laboratory.  So, one considers running 

experiments in one long consecutive batch.  However, this taxes the statistical theory 

behind any of the probability propositions arises from such an experiment.  To overcome 

this, consider the following methodology.  Let A be a proposition concerning the data that 

will be collected in an experiment.  To this proposition associate a vector, rA, as before 

with regions.  Next, consider a complete sequence of mutually exclusive propositions, 
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 Define the approximating vector, .  Declare the assertion:  

  (5.20) 

where the equivalence is modulo an approximation to within a threshold to be made 

precise later.  This also points to the inevitability that experiments may never concisely 

estimate parameters.  Now consider the vectors given by the application of the causaloid 

product : 

  (5.21) 

where  .  Next, define the vector: 

  (5.22) 

Now define the difference vector, and assume the condition 

.  In this way, plays the role of v and that of u.  To get to a calculation of 

the probability proposition, one now considers the vector definition: 

  (5.23) 

A translation of this vector is the following: corresponds to the property that out 

of N regions Rn have the result to within a threshold of .  One now has the 

condition, .  Taking the definition , and using an approximation 

to the binomial distribution, one can rewrite : 
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  (5.24) 

Hence, .  For a given threshold , for a 

sufficiently large .  In this respect, the equivalence, occurs between and and 

the  of A.  The formal definition of a universal causaloid follows: 

Definition: (Universal Causaloid).  The universal causaloid for a region, R, made 

up of elementary regions , when it exists is defined as the entity represented by a 

mathematical object which may be utilized to calculate the vectors, rA for a proposition A 

concerning the data collected in such that if A is , one has that 

where and is a complete set of mutually exclusive 

propositions where is the complementation i times of A. 

By using the symmetries inherent in classical probability (CprobT) and quantum 

theory (QT), the calculation of the can be accomplished without repeated 

experiments within those paradigms.  The universal causaloid is seen as corresponding to 

the entire history of the universe that is essential to calculations pertinent to cosmological 

constructs without the enormity of its computation through these more compact

tests for propositions.  An assumption that would further simplify the 

computations involved with universal causaloids is the principle of counterfactual 

indifference: 
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Definition. (Principle of Counterfactual Indifference). The principle of 

counterfactual indifference is the condition that the probability of an event E does not 

depend on the action that would have been implemented had the complement

happened instead if one conditions on cases where did not happen modulo that the 

measurement device did not alter the state of the observed entity in any large way (low 

key measurement). 

Applying this condition to the case of r vectors, where 

since when one applies the procedure actions F1 and , one does the same 

thing when the same outcomes, X1 are observed by counterfactual indifference.  The 

universal causaloid is a macroscopic approach to physical theory construction.  By 

combining this attribute with the promise of the discrete computational models of LQG at 

the planck scale, despite the unknown emergence of a 3+1 dimensional spacetime at that 

microscopic level, an emergent property of QG may be mended there.  This is the 

proposal of this paper, utilizing a generalization to the probabilistic causaloid and the 

LQG-spinfoam inspired computation at the planck-scale pixels of a surface for describing 

abstract physically conformal information.  

It has been shown that a version of a quantum (classical) computer can be setup 

using the causaloid formalism by considering an abstract computer with generalized gates 

that is a subset of all possible gates in a pseudo-lattice of pairwise interacting qubits.  Call 

this pseudo-lattice of pairwise interacting qubits, .  Call the universe set of gates 

possible, SI.  In a practical computer, the set of gates is restricted to a finite number N.   
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Let be the set of gates in a computer.  Define a causaloid on the set 

of pairwise interacting qubits, .  The triple is then considered a causaloid-

induced computer on a pseudo-lattice of pairwise interacting qubits, , with quantum 

gates S.  Now consider the class of causaloid-induced computers with number of gates 

bounded above by M.  Call this class, .  A universal computer in this class is one that 

can simulate all other computers in .  Here it should be pointed out that an important 

distinction between a QG computer and a quantum (classical) computer is that it is not a 

step computer, i.e., no sequential time steps are realized for computation.  This is so 

because of the indefinite causal structure in a QG environment and subsequent computer. 

 
Figure 12 - QG Computer on Lattice 
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Each node of the pseudo-lattice represents a quantum gate, , where a particular 

gate operator, s is chosen at interaction time between two input qubit information 

channels, .  Upon interaction and gate operation chosen, an output, a, is 

produced via measurement and transformation operators.  The triple, is recorded 

at the gate.  Associated with this record is the vector, .  The two separate qubit 

channel inputs can then be separated as where and mark the fiducial 

measurements on qubits qi and qi respectively.  These operations and the pseudo-lattice 

constitute a causaloid diagram for a quantum computer.  The causaloid for the pairwise 

interacting qubit computer model can be written as: 

  (5.25) 

where R is the set of rules (actions) constructing the causaloid qubit diagram (pairwise 

interacting qubits, nodes with gate operations as defined above) and the clumping 

operations given by the categories in (5.18) and (5.19) for grouping  nonsequential nodes 

for any set in the set of all configurations of qubit nodes, .  State evolution can be 

simlulated by considering nested spacetime regions, where: 

  (5.26) 

Interprete the region Rt as what happens in R after time t.  Now consider the state 

vector, at time t for the region Rt .  Construct the evolution equation as: 

  (5.27) 
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where  is the evolution operator that depends on the output,-procedure pair, 

on the complementary region, .  By using this technique of nested 

regions, one simulates a time evolution without using a physical time parameter. 

QG computers are conceivable and plausible if one can show that a GR computer 

is possible.  Nonetheless, for the sake of completeness, a GR computer should be 

demonstratable using a causaloid formalism as have QT and classical computers above.  

Possible GR compatible computers may utilize gravitational waves and have been shown 

to be plausible Church-Turing-Deutsch physically-based computers leading to 

hypercomputability by utilizing supertasks (Pitowsky, 1990; Etesi & Nemeti, 2002; 

Shagrir & Pitowsky, 2003).  Hypercomputability is the condition in a computing device 

that permits one to compute functions that cannot be computed by a Turing machine.  

These GR hypercomputers utilize a special spacetime structure called Malament-Hogarth 

spacetime. 

Definition (Malamert-Hogarth spacetime).  A pair , where is a 

connected 4-dim Hausdorff manifold and g is a Lorentz metric, is called a Malamert-

Hogarth spacetime if a timelike half-curve and a point and

where denotes the set of past events of . 

In an Malamert-Hogarth (M-H) spacetime  there is a future-directed 

timelike curve that starts at a point q that is in the chronological past of p (i.e., 

, 1t tG 

 
1 \ 1

\ ,
t t R Rt t
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) and ends at p.  So, .  Furthermore, in an M-H spacetime, events 

are not related to each other causally, that is, an M-H spacetime is not globally hyperbolic 

and so, has an indefinite causal structure.  Two other powerful classes of GR computers 

will be reviewed that are capable of computing general recursive functions and are more 

feasible cosmologically. 

Definition. (past temporal string). Consider the string that is formed from a 

collection of nonintersecting open regions, , an M-H spacetime, such that: (i) 

, and (ii) .  Such strings are called past 

temporal strings (PTS). 

PTSs construct complex spacetimes referred to as arithmetic-sentence-deciding 

spacetimes of order n or SADn.  A first order SAD, denoted by SAD1, is a Turing Machine 

(TM) that travels towards an event and is in the event’s past spacetime cone.  SAD1s can 

be stacked on top of each of spacio-temporally to construct higher order SADn. 

Result. A SAD1 can decide 1-quantifier arithmetic, that is, any relation of the form 

where R is recursive. 

Definition. If is a M-H spacetime, then it is a SAD1 spacetime.  If 

admits strings of SADn-1 then it is a SADn spacetime. 

SADn spacetimes construct hierarchies of spacetimes as in the following sequence: 

  (5.28) 
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where an AD is an arithmetic-deciding computer which is a computer that can compute 

exactly functions. 

Now consider GR computers that can perform supertasks in the vicinity of back 

holes.  Rotating black holes that are not charged are classified as Kerr black holes.If they 

are charged then they are called Kerr-Newman black holes.  The exterior of black holes 

that are charged form a spacetime called a Kerr-Newman spacetime and are types of M-H 

spacetimes.  Therefore, an abstraction for a GR computer utilizing the effects near a black 

hole is plausible.  To this end, a scenario is built where two timelike curves, are 

traced respectively, for a computer traveling around the black hole in a stable orbit and an 

observer crossing the outer event horizon of the black hole, entering the inner horizon, 

but not continuing into a singularity.  Both computer and observer start from a point 

with .   

The Malament-Hogarth event takes place at a point p on an orbit around the black 

hole.  The role of the computing device is to decide on the consistency of theorems of 

ZFC and informing the observer of such results.  Assume that a TM, labeled T, that is 

capable of enumerating all the theorems of ZFC exists and that the computing device P 

and observer O have a copy of it each.  Then if the observer, O, does not receive a signal 

from P, before it reaches p, then the ZFC is consistent.  Otherwise, if P receives a 

message before reaching p, then ZFC is inconsistent.  This class of GR computers near 

black holes are referred to as relativisitc computers (Syropoulos, 2008, pp. 

137-148).  

0

( , )P O 

q  and P O   

 ,O PG  
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A similiar, but ideologically different class of black hole relativisitc computers is 

that proposed by Lloyd and Ng.  In this model, the entire black hole is considered as a 

simple but ultimate computer with speed  ops/bit/unit of time and with number of bits 

of storage memory, I, bounded from above according to (Ng & Lloyd, 2004): 

  (5.29) 

Taking this to its physical conclusion, the entire universe is considered a self-referential, 

self-constructing computer and as such, any physical device or thing is a computer 

(Lloyd, 2000; Lloyd, 2006a).  The seeds for a deterministic computing universe 

hypothesis were, of course, planted earlier by Zuse and others in the Zuse Thesis - the 

universe is a computer via deterministic cellular automaton (Schmidhuber, 1996; Zuse, 

1970).  More recently, Wolfram posits that if spacetime is discrete, cellular automaton 

model the universe and as such, are limited in their computation of things, but that 

everything is a computer of sorts (Wolfram, 2002) 

Regardless, it is still unknown how time behaves at the planck scale, posited to be 

fuzzy, at best, in the QG research arena, not withstanding several controversial 

experiments minimizing or challenging this effect (Lieu & Hillman, 2003).  Nonetheless, 

in a conceptual QG computer, the concept of separate space or time resources must be 

combined to reflect a new kind of singular spacetime resource measurement for showing 

computational rates and limitations.  As pointed out before, QG computers are nonstep 

devices. 
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Appendix E: Category and Topos Theory 

Consider an object consisting of general objects, , , ,...A B C labeled as ( )Ob

and maps or relations (sometimes referred more generally as arrows or morphisms), 

, , ,...f g h , labeled as ( )Arr , such that 

1. for each arrow ( )f Arr ,  two objects, ( ), ( ) ( )dom f cod f Ob  such that f 

acts only on ( )dom f and maps only to ( )cod f , i.e., : ( ) ( )f dom f cod f , 

written as ( ) ( )
f

dom f A cod f B   , 

2. for each object ( )A Ob , an identity map, denoted by 1A
exists such that 

1A

A A  

is one such map from A to A, 

3. for each pair of maps, ( , ) in ( ) such thatf g Arr
f g

A B C  , when objects 

, ,  and A B C exists, a composition map h g f exists, defined as
h

A C , 

4. if 
f

A B , then 1B f f and 1Af f (identity laws), and 

5. if ,
f g h

A B C D   then ( ) ( )h g f h g f (associative law). 

Some consequences of this definition are (a) (1 ) (1 )A Adom cod A  , (b) g f is defined 

if ( ) ( )dom g cod f , (c) ( ) ( )dom g f dom f , and (d) ( ) ( )dom g f cod g .  Label the 

pair of objects ( )Ob and arrows ( )Arr as .  If satisfying only condition 1 it is called 

a metagraph.  If in addition, satisfies 2 then it is called a metacategory.   

Metacategories will be subject to the axioms of 3 and 4.  With some imagination, 

one can see the generality of metacategories.  For example, the metacategory of sets 
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consists of all sets and arrows are all functions with the usual identity and composition of 

functions defined in naïve set theory.  The metacategory of all groups consists of all 

groups G,H,K,… with arrows which are functions f from a set G to a set H defined so that 

:f G H is a homomorphisn of groups.  The metacategory of all topological or compact 

Hausdorff spaces each with the continuous functions as arrows (topologies can be defined 

by continuous maps) are two other examples. 

 

Definition. A category is a metacategory, , interpreted within set theory, that is, the 

objects in a category is a set of objects, O and the arrows is a set A of arrows, together 

with the usual functions defined by 
dom

 and
cod

 such that 
dom

cod

A O . 

 

Definition. The set of all possible arrows from the object B to C in , a category, is 

denoted as hom( , ) { |  in , ( ) , ( ) }B C f f dom f B cod f C   , the set of its morphisms. 

 

The set hom( , )A A defines all endomaps, for all objects A in , a category.  A 

special type of category is the monoid which is a category with exactly one object.  

Indeed, a category is a very general animal which can be described as a generalized 

mathematical object reflecting the rich structure of specialized mathematical structures 

used in known diverse mathematical and scientific endeavors.  In order to further develop 

the richness of categories, the definition of mapping between categories is given. 

To generalize the ideas of a null set and singleton subsets we define initial and 
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terminal objects of a category .  

 

Definitions. An object 0 is initial in a category if for every ( )A Ob  there is 

one and only one arrow : 0Af A in .  Reversing the role of arrows, an object 1 is 

terminal in if for every ( )A Ob there is one and only one arrow : 1Af A  in . 

 

Duality is a mathematical concept in which the roles of two objects engaged in a 

structural relationship are reversed.  In the general case of categories, which would 

generalize to dualities everywhere, one constructs: 

 

Definition. From a given category , construct its dual or opposite category, op in the 

following manner: 

( ) ( )opOb Ob  and for each f  mapping A B , define the arrow op opf 

mapping B A .  The only arrows of op are of these constructions.  The composition 

op opf g is defined precisely when f g is and ( )op op opf g g f .  In addition, 

( )opf cod f  and ( ) ( )opcod f dom f .  

 

The significance of duality in category theory is that if a statement of category 

theory is held to be true then automatically the statement given by the opposite op is true 

as well.  The conclusion is that this duality principle cuts in half the work to be done in a 

category or in category theory in general (Goldblatt, 2006).  One would like to generalize 
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the concept of products and limits since with these constructionists theories can be built.  

To this end define general diagrams and cones: 

 

Definition. Let D be a metagraph (diagram) with vertices { : }id i I for a category .  A 

cone over D is a family of arrows { : }
if

iA d i I  from A to objects in D such that for any 

arrow 
ijf

i jd d in D, the diagram 

 
Figure 13 - Category cone 

 

commutes.  The object A is called the vertex of the cone.  An arrow from a cone over D

{ : }
Ai

f

iA d i I  to another cone over D{ : }
Bi

f

iB d i I  is a -arrow
g

A B if the diagram 

 
Figure 14 - Category arrow 
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commutes for each i I .  If such an arrow g exists then the cone { : }
Ai

f

iA d i I  factors 

through the cone{ : }
Bi

f

iB d i I  .  The set of cones over D denoted by Cone(D) then form 

a category using this procedure.  One now gets to the definition of limits. 

 

Definition. A limit for the diagram D is the terminal object of Cone(D).  The colimit of D 

is the terminal object of the cone, ( )oppCone D which is the cone defined over the dual 

category, op .  

 

Definition. A category, is said to be (finitely) complete or cocomplete if the limit or 

colimit of any finite diagram in exists in . 

 

A useful device for category manipulation is the pullback mechanism.  Formally, 

a pullback of a pair of arrows defined as 
f g

A C B  in ( )Arr with common codomain, 

C, is a limit in for the diagram: 

 
Figure 15 - Category pullback 

 

where a cone for this diagram consists of a triplet of arrows ( ', ', )f g h in such that the 
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diagram: 

 

 
Figure 16 - Category pullback cone 

 

commutes.  Using the definition of a universal cone and the commutivity of the above 

diagram, one can eliminate the arrow h and arrive at a more precise definition, 

Definition. A pullback of the pair of arrows
f g

A C B  in ( )Arr is a pair of 

arrows 
' 'g f

A D B   in ( )Arr such that: 

(1) ' 'f g g f in ( )Arr , and 

(2) whenever
jh

A E B  are a pair of arrows in ( )Arr such that f h g j  

then there is exactly one arrow in ( )Arr :k E D such that 'h g k and 'j f k .  The 

diagram ( , , ', ')f g f g is called a pullback square (Goldblatt, 2006). 

Exponentiation is defined next.  Consider the category given by the usual sets of 

axiomatic set theory with set operations.  Denote this category by the label, SET.  If A and 

B are two sets in SET, let { : : }AB f f A B  denote the set of all functions (arrows) 

having domain A and codomain B.  A special arrow in SET will be associated with AB , 
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the evaluation arrow, : Aev B A B  with the assignment rule, (( , )) ( )ev f x f x . 

 

Definition. A category has exponentiation if (a) it has a limit for any two arrows 

in ( )Arr , and (b) if for any given objects , ( )A B Ob there exist an object, AB and an 

arrow, ( )ev Arr , : Aev B A B  , referred to as an evaluation arrow, such that for 

any ( )C Ob  and ( )g Arr , :g C A B  , there exist a unique arrow, ˆ ( )g Arr

making the diagram: 

 
Figure 17 - Category exponentiation 

 

commute, that is, the existence of a unique arrow, ĝ such that ˆ( 1 )Aev g g  . 

In order to compare two or more categories, a mechanism must exist that maps 

categories to each other.  The space of morphisms between two categories will now be 

defined. 

 

Definition. A functor, T is a morphism between two categories,  and , written as 

:T  in which ( )dom T  and ( )cod T  , which assigns to each C , an object

( )T C   and an arrow associated with T, written, arT , that assigns to each arrow 
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':  of f C C an arrow 
': ( ) ( ) of arT f T C T C in such a way so that 

( )(1 ) 1  and ( ) ( ) ( )C T CT T g f T g T f   

whenever, g f is defined in C. 

 

Functors on categories must act on both objects and arrows of categories as 

above.  In this way a composition of functors, functor isomorphism, and a faithful functor 

can be defined to expand on the space of category functors and hence on the relations 

between categories. 

 

Definitions. (a) A functor :S T  is a functor composition of functors S and T if 

T S

  are functors between categories , , and such that ( ( ))C S T C  and 

( ( ))f S T f for objects C and arrows f of . (b) A function :T  is a functor 

isomorphism between and if it is a bijection both on objects and arrows between 

and , i.e., if  a functor :S  for each functor T, such that S T T S Id  where 

Id is the identity functor between and and 1S T  is a two-sided inverse functor.  (c) 

a functor :T   is full when to every pair '( , )C C of objects in  and every arrow

: ( ) ( ')g T C T C of ,  an arrow : 'f C C in  with ( )g T f , and (d) a functor 

:T   is faithful (an embedding) if to every pair '( , )C C of objects and every pair 

( , )f g of parallel arrows (arrows with the same domain and codomain) in , 

( ) ( )T f T g f g   .  A consequence of these definitions is that compositions of 
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faithful and full functors are again faithful and full respectively. 

 

Faithfulness and fullness are embedding features between categories in the 

following sense: if ( , ')C C is a pair of objects in , the arrow of T, :arT  assigns to 

each : 'f C C an arrow ( ) : ( ) ( ')arT f T C T C  so that a function is defined: 

( , ') : hom( , ') hom( ( ), ( ')),   ( )C CT C C T C T C f T f   

as a mapping of the set of arrows between C and C' to the set of arrows between T(C) and 

T(C'), then T is full when every such function ( , ')C CT is surjective and faithful when it is 

injective.  If T is both full and faithful, then every such ( , ')C CT is bijective, but not 

necessarily an isomorphism (MacLane, 1971).  Embeddings of categories naturally call 

upon a definition of subcategories or categories contained within other categories. 

 

Definitions. A subcategory  of a category  is a collection of objects and arrows of 

that is closed under identities, domains and codomains, i.e., (a) if f is an arrow of 

then it is an arrow of and both ( )dom f and ( )cod f are objects of , (b) for each object 

S in , its identity arrow, 1S is in , and (c) for every pair of arrows ( , )f g in ,their 

composition, g f is in .  Consequently, is also a category.  An injection map, 

:injT  sending objects and arrows of to itself in is called the inclusion 

functor.  It is consequently faithful. is called a full subcategory of when injT is full 

(MacLane, 1971). 



 

336 

 

 

 

A useful example of a functor which will play an important role in mapping 

structures in a set-theoretic setting to a category-theoretic setting is the so-called forgetful 

functor denoted as :FOR C SET where SET is the category of ordinary sets in set 

theory and C is any mathematical system (category).  FOR strips off the extra structure 

attached to C and produces just the set objects of C as a new simply set category.  FOR 

essentially forgets any structure (arrow rules, etc.) that C may have had, i.e., for a 

category , if ( )A Ob , ( ) AFOR A S  where
AS is the strict set part of A and

( )FOR f f for any ( )f Arr .Versions of partially forgetful functors have been 

presented such as the class introduced by Geroch (1985) in which a functor is partially 

forgetful if it strips a category down to the categorically nearest simpler category (i.e., 

nearest meaning being in the same category, but with less structure morphologically).  

These lesser structured categories may then be mapped back to the richer categories that 

were stripped down by free construction functors that would then reintroduce the original 

richer structure back.   

As an example, the Abelian group category, ABLGRP, can be stripped back 

entirely by FOR, but if we introduce a partially forgetful functor that just strips away 

commutivity, ANTICOM the group category, GRP is produced.  By applying a free 

construction functor, COM that reintroduces commutivity back into GRP, one obtains 

ABLGRP.  This will serve in producing a categorical chain of categories in which the 

repeated application of partially forgetful functors in combination with free construction 
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functors will produce a family of categorically related structures and hence, a metachain 

for model-theories and their mathematical structures. 

 

 
Figure 18 - Categorification process 

 

A general way of defining a natural transformation of one functor to another in 

such a way that commutes between categories is through the following: 

 

Definition. For two functors, , :S T  , a natural transformation that maps S 

to T, denoted by : S T  , is a function that assigns to an object C of , an arrow

: ( ) ( )C S C T C  of such that every arrow : 'f C C in commutes in the following 

diagram: 
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Figure 19 - Category natural transformation 

 

The transformation,
C is called natural in C (MacLane, 1971).  The notion of 

generalized categorical subsets, known as subobjects and the mechanism to find 

subobjects, a subobject classifier, will be discussed next. 

 

Definition. An arrow ( )f Arr , :f A B is called monic if for any parallel pair 

of arrows, , :g h C A in ( )Arr f g f h g h   . 

 

Definitions. A subobject of an object, ( )D Ob is a monic arrow in ( )Arr ,

:f A D ,with codomain D.  The set of all such subsets of D (if D is an ordinary set) is 

called the powerset of D, denoted by ( )D or 2D . 

 

Ordinary set inclusion,  defines a partial ordering in ( )D so that ( ( ), )D 

becomes a poset and hence a category in which the role of arrows is .  

Inclusion arrows then become commutative, reflexive, and transitive between subobjects.  

A generalization to in any category is the set of power objects denoted as D  where 

  A B A B  

2D
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the universe of discourse generalizes the binary set . 

 

Definition. A category, with limits is said to have power objects if to each 

object, , there are objects , and  a monic arrow 

, such that for any object and relation map given by

, there is exactly one arrow for which there is a pullback in

taking on the form, 

 
Figure 20 - Category power object pullback 

 

A relation map is a map with domain consisting of a relation R, which is an object 

such that in which where is an arrow 

appropriately defined for the inclusion in R. 

 

Definition. In a category, with terminal object 1, a subobject classifier for is 

an object together with an arrow,  that satisfies the following 

axiom: 

{0,1}

( )A Ob ( ) and AA 

:  ( )A A A    ( )B Ob

:r R B A  : ( )rf B 

R A B  ( , ) ( )Rx y R y f x   :Rf A B

( )Ob :1true 
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-axiom.  For each monic arrow, , there is one and only one arrow,

 
such that the diagram: 

 
Figure 21 - Category subobject classifier pullback square 

 

is a pullback square.  Here is called the character of the monic arrow f (as a subobject 

of D), true is the arrow assigning a truth value of TRUE from the universe of discourse of 

truths, , and ! is the composition arrow defined by .  The arrow 

simply maps the value TRUE in  to the terminal object 1 in . 

Enough structure has been defined to develop the formal definition of a Topos, 

which will serve as the template for a generalization to physical logic systems employed 

by information fields as defined in this dissertation. 

 

Definition. An elementary topos is a category, such that 

 (1) is finitely complete,  

 (2) has exponentiation, and 

(3) has a subobject classifier (Lawvere & Schanuel, 1997). 

 :f A D

:f D 

f

 1 : 1ftrue f A 

1true  ( )Ob
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Alternatively, a category is a topos if 

 (1) is finitely complete, and 

 (2) has power objects (Wraith, 1975). 

For purposes of defining categories for recursive games (as product spaces of 

games), we consider category products.  Products are considered as special cases of limits 

as has been reviewed earlier. Here we explicitly define products through morphisms 

(arrows) that are product projections to each component space. Formally, let I be a finite 

(discrete) index category. Define a product as follows: 

 

Def. A category X is the product of a series of categories  i i I
X


if and only if there exists 

morphisms (canonical projections) :i iX X   such that for every Y and family of 

morphisms :i if Y X , there exist a unique morphism :f Y X  such that the diagram 

below commutes for every .i I  

  
Figure 22 - Category product using canonical projection morphisms 

  

This product category is denoted as i

i I

X X


  with projection morphisms  i i I
f


. For 

countable products, a product is viewed as a special categorical limit using the category 
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index space In  mapped to the finite product 
n

i

i I

X


 , by a functor, :
n

n n i

i I

I X


 .  If the 

set of index categories are sequentially inclusive and approach a countable set, I,

1...,  and limi i n
n

I I I I


  , then using the category definition of a limit and the cone 

  , i i I
I f


, one concludes that the cone   , i i I

I 


, using the projections  i i I



, is the 

product limit. 

 
Figure 23 - Category product using category cone limit 

 

The concept of n-categories and a well defined generalization to  ,n -category theory 

will be briefly discussed.  The category theory outlined so far is of the 1-category where 

objects and morphisms mapping objects to other objects structure a category.  The 0-

category is simply a point set.  The strict 2-category structure consists of objects, 

morphisms, and morphisms of morphisms called 2-morphisms.  In general, the strict n-

category is iteratively defined as repeated morphisms of morphisms, n times or n-

morphisms.  This n-category is sometimes written as nCat.  In the case of 2-categories, 

the more general class of bicategories needs more definition of operations in order to be 
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well defined.  Instead of equational equality, morphisms are equivalent up to 

isomorphisms.  The Stasheff pentagon identity and MacLane’s coherence theorem suffice 

to show a well defined diagram for bicategorical equivalence (Baez, 1997).  The diagram 

below must commute in a bicategory, 

 
Figure 24 - Stasheff pentagon diagram 

 

for morphisms f, g, h, and i, 1i and 1f are identity morphisms, and the ' s are the 

appropriate 2-morphisms.  Additionally, the following diagram must also commute, 

 
Figure 25- Triangle commute diagram for bicategory 

 

given the morphisms, : , :f x y g y z  , and the 2-morphisms that are the left and 

right identity constraints respectively, :1 ,  : 1f x f yl f f r f f  , for every morphism
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:f x y .  Lastly, the associators and unit constraints are natural transformations, and 

vertical composition of 2-morphisms is associative, vertical and horizontal composition 

of 2-morphisms are interchangeable and1x
 are identifies for vertical composition of 2-

morphisms.   This process of producing a bicategory from a strict 2-category is called 

weakening and produces a series of weak versions of n-categories known as weak n-

categories.  The idea is that the weak n-categories are more interesting because they have 

direct applications in physical structures.   

In the higher n-categories, the j-morphisms are visualized as j-dimensional solids 

with boundaries defining source and targets of those j-morphisms.  Strict n-categories use 

j-morphism representations called globes as the building blocks for defining (j+1)-

morphisms and their well-defined operations.  Weak n-categories approach these 

representations where equality of morphisms is at the top level n and isomorphisms 

define equivalences for lower level morphisms below that.  Essentially, to map 

equivalences in n-categories, must look at the (n+1)-categories.  See Leinster (2001) for a 

diversity of definitions and approaches to n-categories.  Taking the trivial limit of weak 

n-categories, the  -category (or  -category) is the category of all weak categories.   

The concept of  ,n r -categories are categories that are enriched by the condition 

that all j-morphisms are equivalent (and hence reversible) for j r , and any two parallel 

j-morphisms are equivalent for j n .  This still works to define  ,n -categories.  The 

fullest (richest) such category is the  ,1 -category and all such enriched categories can 

be studied from that one (nLab, 2012).  


