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Abstract

We propose a consistent criterion for model order selection in the model identification phase of time series and regression,
based on a weighted average of an asymptotically efficient selection criterion, AICC (bias-corrected Akaike information
criterion) and a consistent selection criterion, BIC (Akaike's Bayesian modification of AIC). The weights attached to
AICC and BIC are optimal choices from a natural class of possible weights, and are proportional to the model-complexity
penalty term of AICC and BIC, respectively. Thus, the AICC part of the criterion receives most of the weight for small
sample size », and the BIC part receives the most weight for large n. It is shown that this weighted average criterion,
WIC, is essentially equivalent to AICC for small n and to BIC for large n. An extensive simulation study comparing
the performance of WIC with several popular criteria has been done. It clearly shows that WIC is a very reliable and
practical criterion. In particular, for small n, WIC performs as well as AICC and outperforms other criteria, and for large
n, WIC performs as well as BIC and outperforms other criteria. This demonstrates the overall strength of WIC. © 1998
Elsevier Science B.V. All rights reserved
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1. Introduction

Model identification involving order-selection criteria are usually based on the minimization of a loss
function of the following form:

G(G2) + P(n,m). (1)

Here, P(n,m) is a nonnegative random variable depending directly on sample size n and the number of fitted
parameters m of the candidate (or approximating) model. P(n,m) measures the complexity of the candidate
model and serves as a penalty term for overfitting. G(a”f ) is a measure of goodness-of-fit of the candidate model
to the data and is dependent on a sample estimator of the residual variance, &f . Criterion may be categorized,
under certain conditions on the true and candidate models, to be asymptotically efficient, or consistent. See,
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e.g., Shibata (1980) or Brockwell and Davis (1995, pp. 304-305) for definitions and conditions. Criteria that
are asymptotically efficient are AIC (Akaike, 1974), AICC (Hurvich and Tsai, 1989), CP (Mallows, 1973),
CAT (Parzen, 1977) and others. Those which have been shown to be consistent are BIC (Akaike, 1978),
SIC (Schwarz, 1978), HQ (Hannan and Quinn, 1979), PLS (Rissanen, 1986), FIC (Wet, 1992) and others.
The more recent ODQ (Zhang and Wang, 1994) is an example of a “separation point” method that does not
minimize a given loss function. It has been shown to be consistent under mild conditions.

All these criteria have relative advantages depending upon the situation in which they are used. Recent
studies have shown that the asymptotically efficient criterion AICC tends to give the best estimate of the true
model order when m/n is large, and the consistent criterion BIC tends to outperform other criteria when m/n
is small (Hurvich and Tsai, 1989; Litkepohl, 1985). Therefore, large sample sizes favor BIC, while small
sample sizes favor AICC. Nonetheless, it may be difficult to pick a criterion based on intermediate sample
sizes. In addition, at what sample size does one switch criteria for model order selection? Factors involving
one’s decision depend on unknown information inherent to the true model. Hence, a criterion which eliminates
this seemingly arbitrary decision should prove valuable in model building.

To achieve the above goal, we propose a weighted average of AICC and BIC, as a new order selection
criterion, for both regression and time-series models. The weights attached to AICC and BIC are proportional
to the model-complexity penalty terms of AICC and BIC, respectively. Thus, the AICC part of the criterion
receives most of the weight for small #, and the BIC part receives the most weight for large n. These weights
are optimal choices from a natural class of possible weights. This criterion, called weighted-average information
criterion (WIC), is consistent and is asymptotically equivalent to BIC as # — oo. On the other hand, WIC
retains characteristics of AICC for small » since it is asymptotically equivalent to AICC as n | m + 2. We
compare the performances of WIC with several popular criteria by means of simulations in which the true
model is finite dimensional. It clearly shows that WIC is a very reliable and practical criterion over a wide
range of models and sample sizes. In particular, for small #n, WIC performs as well as AICC and outperforms
BIC and other criteria, and for large », WIC performs as well as BIC and outperforms AICC and other
criteria. In addition, a maximum cut off on the allowable dimension of the candidate models is not needed
for WIC. The theoretical and simulation results demonstrate the overall strength of WIC, as a whole.

Section 2 contains the definition of W/C and theoretical results. Section 3 presents simulation results for
regression, AR, MA, and ARMA model selection.

2. The weighted average information criterion

Both AICC and BIC attempt to correct the overfitting nature of AIC. To that end, AICC is most successful
at small n, whereas BIC is most successful at large n. The WIC, as proposed below, combines the strengths
of AICC and BIC in some optimal way. Consequently, WIC dramatically improves AIC with any n.

The AICC, up to a constant, can be expressed as

AICC = nlogd? + A4,

where
A=2n(m+ 1)/ (n—m-—2)

(Brockwell and Davis, 1995). The BIC, up to a constant, can be written as
BIC = nlog 62 + B,

where

B=(m—n)log(l —m/n)+mlogn +mlog{m*1(6/2\,/6f -}
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with &f( denoting the sample variance of the observations. Furthermore, in typical situations
BIC = SIC + O(m),
where
SIC = nlog 6% 4+ mlogn (2)

and O(m) denotes a term which is functionally independent of »n (Priestley, 1982, p. 376; Schwarz, 1978).
The proposed criterion, WIC, is expressed as

WIC = {4/(4 + B)}AICC + {B/(4 + B)}BIC = nlog 6> + W,
where
W = (4% + B*)/(4 + B). (3)

Note that W is the penalty term, which is always between 4 and B. We now explain why WIC should
work, as given by (i)—(iv) below. Results (i) and (ii) measure the asymptotic closeness among the penalty
terms and among the criteria, (iii) gives the consistency of WIC, and (iv) establishes the optimality of WIC
(or equivalently, of its weights). In what follows, n is used as if it were real in the convergence statement
“n | m + 2”. The purpose of this usage is to help us to get a real feeling of the closeness between A and
W, and between AICC and WIC for small sample size. Also, unless otherwise specified, all convergence
involving random variables are in the strong sense:

(1) As n — oo, the penalty terms 4 — 2(m + 1) and B — oo, so that the weights B/(4 + B) — 1 and
A/(A+ B) — 0. Hence WIC behaves like BIC for large n. On the other hand, as n | m + 2, the penalty terms
A — oo and B — mlog (m + 2) + O(m), so that 4/(4+ B) — 1 and B/(4 + B) — 0. Hence WIC behaves
like AICC for small n.

(i) The difference between the penalty terms, B and W, is given by B — W = A(B — A)/(4 + B), so that
as n — 00,

(B— W)/B = 0(4/B) = O(log™" n),
(BIC — WIC)/BIC = (B — W)/BIC = O(4/n) = O(n™") (4)

and, consequently, W ~ B and WIC ~ BIC (here “a ~ b” means that a and b are asymptotically equivalent,
i.e., a/b — 1). On the other hand, the difference between the penalty terms, 4 and W, is given by 4 — W =
B(A—B)/(A+B),sothat as n | m+ 2,

(4 —W)i4=0(B/4) = o(1),

(AICC — WIC)/AICC = (4 — W)/AICC = O(B/4) = o(1)
and, consequently, W ~ 4 and WIC ~ AICC.

(iii) The criterion WIC is weakly consistent under general conditions. This can be seen from equations (2)

and (4), and from Hannan (1980) (see his paper for conditions).

(iv) Among possible weighted averages of AICC and BIC, it is natural to consider the class of criteria
F={WIC(r): r =1}, where

WIC(r) = {4" /(4" + B")}AICC + {B" /(4" + B")}BIC = nlog &f + W,,
and

Wr — (Ar+l +Br+l)/(Ar+Br)
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(see Remark 1 below for a more rigorous derivation of the class % ). Evidently, W, is between 4 and B.
Further, it is easy to see that for r > 1, the WIC(r), along with its weights and penalty term, possess asymptotic
properties which are similar to those stated in (i)(iii) above. Thus, every member of # appears to be a
feasible criterion. Let us consider a measure of the overall discrepancy of W, from A and B (or equivalently,
of WIC(#) from AICC and BIC), namely,

d(r) = (4 — W,)* + (B — W,)> = (AICC — WIC(r))* + (BIC — WIC(r))*,r>1.

For any sample size this measure puts equal weight on (4 — W, y* and (B — W, )* , which is conservative but
sensible due to the uncertainty of the circumstances. The quantity d(#) can be thought of as a quadratic loss
function. The goal is to minimize d(r) over r>1. The derivatives of W, and d(r) are, respectively, equal to

W! = (4"+ B")24"B" (4 — B)log(A/B)
and
d'(r)=2W;2W, — 4 — B) =2W[(4" - B')(4 - B)/(4" + B).

Evidently, d'(r) is positive for all »>1. Therefore, the minimum of d(r) occurs at the left endpoint r = 1.
This shows that for any sample size, WIC (the special case » = 1 here) is the optimal choice from the class
Z in the sense of minimizing d(r).

It can be easily shown that for any » < 1, (B —W,) = O(B'™") — o0 as n — o0, and (4 — W,) =
O(4'7") = oo as n | m+ 2, so that W, does not have the desired asymptotic closeness to 4 or B. Therefore,
the case » < 1 is excluded from the above consideration.

It is worthwhile to consider another measure of the overall discrepancy of W, from A and B, namely,

dy(r) = c(Ad — W, + (1 — ¢, X(B ~ W, )2,
where
oy = A/(A° + B, s=1.

Evidently, ¢, — | as n | m+ 2, and ¢, — 0 as n — oo. Thus, dy(r) applies the most weight on (4 — W,y
for small n, and on (B — W,)? for large n, and so d(r) is not so conservative as is d(r). Upon differentiating
d¢(r) with respect to r, we get

di(r)y=2W/(W, — c,d — (1 — ¢,)B) = 2W/(A'B* — A'B" (A — B)/{(4" + B'}A* + B°)}.

Consequently, di(r) >, = or < 0 according as r >, = or < s, and the minimum of d(r) occurs at » = s.
Therefore, the WIC(s) is the optimal choice from the class # in the sense of minimizing d;(r). This provides
a different point of view for the optimality of WIC (which corresponds to the special case s = 1 here).

Remark 1. Instead of choosing the class # in advance, one may ask the following question: What are the
conditions on the weight 0 < x < 1, such that the linear combination

L(x) = x AICC 4 (1 — x)BIC = nlog 6> + x4 + (1 — x)B

1s essentially equivalent to AICC as n | m+ 2 and to BIC as n — co? To achieve this, a necessary condition
isthat x — 1 as n | m+ 2 and x — 0 as » — oc. Furthermore, by the arguments in (i) above, we see that
for any ¢t > 1,

(AICC — L(x)) = (1 —=x)'(A —BY =(1 —x)' (4 —O(m)) < (1 —x)d' as n|m+2
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and
(BIC — L(x)) =x'(B—4) =x(B—0O(m)) < x'B" as n— oc.

It follows that (AICC — L(x))" = o(1) if and only if (1 ~x)4’ =o(1) as n | m+2, and (BIC — L(x)) = o(1)
if and only if x'B’ = o(1) as n — oco. Therefore, (1 — x)'4’ should be as small as possible at small » and
x'B' should be as small as possible at large n. Now, for any sample size n, one may not be able to ascertain
whether » is small or large, since these are relative terms that depend on the unknown complexity of the true
model. Thus, at any », a reasonable step to take, is to choose x such that

Di(x) =x'B' + (1 —x)4'

is minimized. This scheme obtains a balance between minimizing x'B’ and minimizing (1 — x)'4’. Now, a
simple calculation shows that for any ¢ > 1, D,(x) is minimized at x, = 4"/(4" + B") where r = t/(t — 1).
This explains the rationale in using .% as the candidate family for the optimality problem discussed in (iv)
above, since % is the closure of {L(x,):r =1¢/(t — 1),t > 1}.

We conclude this section by noting that in (3) the SIC and its penalty term mlog(n) may be substituted
for BIC and B, respectively, to give an asymptotically equivalent version of WIC. Denote this version by
WICs. The WICs is computationally simple and should perform nearly as well as WIC for small or large .
However, its performance is worse than that of WIC for intermediate or moderately large .

3. Simulations

We conducted extensive simulations to investigate the performance of WIC with respect to other criteria
including AICC, WICs, BIC, ODQ, SIC, HQ, PLS, and FIC. The FIC and PLS criteria were used only in the
regression case, while the ODQ and HQ criteria were used only in the time series case. We generated 100
realizations of samples at several different sizes from time series or regression models with various structures.
For each realization, parameters and residual variance of the candidate models were estimated by the maximum
likelihood method (the PEST program from the ITSM Package, Brockwell et al., 1995, was used), and the
above- mentioned criteria were used to select from among the candidate models. Out of the 100 realizations
the frequencies of the model orders selected were tabulated for each criterion, sample size, and model.

Specifically, we generated 100 realizations from the following time series models:

AR(2): X =0.99%,_;, —08x,_> + ¢,

AR(3): X = —095x,_) +x,_5 +095x,_3 + ¢,
AR(7): X, =0.1x,_y +0.5x,_7 + ¢,

MA(1): xr =& + 0.95¢,_,

ARMA(2,2):  x, =0.99%,_; — 0.8x,_» + & + 0.95¢,_1 + &_»,

where & ~ N(0,1), ¢ = 0,1,..,n — 1, are uncorrelated Gaussian random variables. The AR(2), AR(3),
and MA(1) models were used as in Hurvich and Tsai (1989), and the AR(7) model was used as in Zhang
and Wang (1994). Here, the AR(2) model is stationary. The AR(3) model is nonstationary. The MA(1)
model is invertible, but its characteristic root is close to the unit circle. The ARMA(2,2) model is stationary
but noninvertible. Tables 1-5 show the frequencies of model orders selected by the various criteria. Seven
different sample sizes were generated, n = 15,20,25, 30,35, 50, 100. To save space, only the four cases n =
15,25,35,100 were included. Maximum model order cut -off of 10 was also utilized. Table 5 demonstrates the
applicability of model selection criteria when considering mixed ARMA models. The alternative candidates in
Table S include a variety of pure AR, pure MA, and mixed ARMA models. Fig. 1 plots the relative frequency
curves of correct model order selections of the criteria, as functions of #n, from 1000 realizations of samples
of sizes n = 15, 25, 35, 50, 100, respectively, from the AR(3) model. Fig. 2 plots the average values of the
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Table 1
Number of time-series model order selections out of 100 realization under an AR(2) model
(n=15, 25, 35, 100). Maximum order = 10

Model order

Criterion 1 2 3-5 6-10

AICC 8, 5 3,0 69, 78, 84, 95 18, 14, 13, 5 5 3 0,0
WIC 7, 51, 0 68, 77, 90, 99 20,14, 9, 1| 5, 4,0, 0
WICg 8, 5 2,0 65, 75, 84, 95 21, 16, 11, 5 6, 4, 3, 0
BIC 7, 4, 0, 0 65, 77, 91, 99 23,16, 9, 1 S5, 3 0, 0
SIC 9, 6, 2, 0 61, 72, 85, 95 24,17, 11, § 6, 5 2,0
HQ 3, 2,0, 0 51, 61, 82, 93 22,18, 14, 7 24,19, 4, 0
0DQ 5,1, 0, 0 58, 69, 81, 93 32,25, 15, 7 5, 5 4,0
Table 2

Number of time-series model order selections out of 100 realizations under an AR(3) model. Maxi-
mum order = 10 (n = 15, 25, 35, 100).

Model order

Criterion 1-2 3 4-5 6-10

AICC 19, 3, 3, 0 45, 70, 82, 95 18, 16, 14, 6 18, 11, 1, 0
WIC 8 5 1, 0 43, 66, 91, 99 24,15, 8, 1 25,14, 0, 0
WICg 9, 6, 2, 0 31, 60, 83, 95 44, 29, 10, 5 16, S, 5, 0
BIC 8 4, 0, 0 30, 58, 91, 99 25,21, 9, 1 37,17, 0, 0
SIC 9,3 2, 0 19, 44, 83, 95 21, 12,10, 5 50,41, 5, 0
HQ S5, 4, 2, 0 10, 39, 80, 92 21, 14, 11, 8 64,43, 7, 0
ODQ 8, 1, 0, 0 29, 54, 81, 93 33,31, 14, 7 30, 14, 5, 0
Table 3

Number of time-series model order selections out of 100 realizations under an AR(7) model. Maxi-
mum order = 10 (n = 15, 25, 35, 100).

Model order

Criterion 1-3 4-6 7 8-10

AlICC 4, 3, 1, 0 12,10, 9, 6 48, 60, 68, 82 36, 27, 22, 12
WIC 4, 3,1, 0 14,12, 8, 0 47, 56, 76, 95 35,29, 15, 5
WICq 7, 6,10, 0 20, 23, 21, 12 44, 49, 51, 73 29, 22, 18, 15
BIC 4, 2, 0, 0 25,23, 6, 0 39, 53, 82, 95 32,22,12, 5
SIC 4, 2,6, 0 12, 17, 15, 11 25, 34, 45, 73 59, 47, 34, 16
HQ 2, 1, 0, 0 9, 7. 5 0 24, 33,42, 72 65, 59, 53, 28
0oDQ 12,10, 0, O 31, 27,11, 4 30, 40, 71, 94 27,23, 18, 2

criteria, as functions of m, from the 100 realizations for the AR(2) case, while the maximum model order
cut-off was 20.

Some conclusions may be warranted from Tables 1-5, and from Fig. 1. Firstly, the WIC exhibited robustness
and stability in comparison to the aforementioned criteria in this study. The WIC was either as good or came
in a strong second throughout every sample size and model order scenario considered. Secondly, for any
particular model included, the relative frequency of successfully selecting the correct model order from the
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Table 4
Number of time-series model order selections out of 100 realizations under an
MA(1) model. Maximum order = 10 (n = 15, 25, 35, 100).

Model order

Criterion | 3-5 610

AICC 58, 66, 71, 89 30, 25, 23, 11 12, 9, 6, 0
WIC 55, 64, 75, 99 32, 23,18, 1 13, 13, 7, 0
WICg 52, 60, 72, 96 32, 26, 20, 4 16, 14, 8, 0
BIC 18, 51, 79, 99 53, 36, 18, 1 29,13, 3, 0
SIC 16, 42, 75, 97 50, 48, 17, 3 34,10, 8 0
HQ 17, 40, 71, 95 25,21, 12, 4 58,39, 17, 1
0ODQ 34, 50, 72, 97 42,39, 24, 3 24,11, 4, 0

Table §
Number of time-series model order selections out of 100 realizations under an ARMA(2,2) model. Maximum order
= 10 (n = 15, 25, 35, 100). Totally, there are 20 candidate models.

Model order
Criterion AR(1)- MA(1)- ARMA(1,1) ARMA(1,2)& ARMA(2,2)
AR(6) MA(10) ARMA(2,1)
AICC 2,1,0, 0 7,7,0,0 18, 7,7, 0 31,26,24,19 42,59,69,81
WIC 7.0,0, 0 13,6, 0,0 10, 8, 1, 0 29,32,19,12 41,54,80,88
WICg 2,0,0, 0 10,5, 2,0 14,10, 3, 0 39,31,24,14 35,54,71,86
BIC 2,10, 0 13,13, 0,0 16,10, 1, 0 46,28,20,12 23,48,81,88
SIC 3,2,0, 0 17, 9,6, 0 12, 9,6, 0 46,35,16,15 22,45,72,85
HQ 31,20,10, 6 18,15, 5, 2 7.5,3,1 21,16,11, 8 23,44,71,83
oDQ 0,0,0, 0 10, 2,0, 0 15,12, 3, 0 49,39,22,18 26,47,75,82

WIC, was very favorably comparable or nearly as high as that of the best criterion for the situation. In
particular, again as regards to the relative frequency of correct model order selections (see again Fig. 1), for
small sample sizes, the WIC was nearly as good as the AICC; for large sample sizes, the WIC asymptotically
approached the behavior of the BIC quickly; and for intermediate sample sizes, the WIC performed much
better than the worst of the two criteria, AICC or BIC, and nearly as well as the best of these two.

In regards to performance at specific sample sizes, the WIC outperformed other criteria and was comparable
to AICC at the small sizes of n = 15,20,25. Moreover, it outperformed other criteria, and was comparable
to BIC at the sample sizes of n = 35,50. In addition, it was equal to BIC at the large sample size of n =
100. Finally, at the intermediate transitional zone between what may be considered small and large samples
(approximately between n = 20 and 40 for the time series models considered here), the WIC dominates other
criteria due to its stable performance (WIC was either the best or a very strong second , whereas other criteria
varied more in ranking).

Fig. 2 demonstrates that the average value of WIC attains a global minimum at the correct value. Moreover,
it implies that the maximum cut-off has virtually no effect on the model selected by WIC. Indeed, WIC
preserves such desirable properties from AICC and BIC (Hurvich and Tsai, 1989).

The regression simulations were done as in Wei (1992) and Hurvich and Tsai (1989). Specifically, we
generated 100 realizations of samples at three different sizes n = 15,20, 50, from each of the following three
models: the linear trend model M, and the random walk (with drift) model M,, both of Wei (1992), and
the third order regression model of Hurvich and Tsai (1989). The readers are referred to their respective



8 T.-J. Wu, A. Sepulveda | Statistics & Probability Letters 39 (1998) 1-10

Relative Frequency of Correct Selection

20 40 60 80 100

Sample Size, n

Fig. 1. Relative frequency of correct model order selections for AICC (solid line), WIC (long-dashed line), BIC (dashed line). The
relative frequency of correct model order selections are taken from 1000 replication of samples of size n from the AR(3) model.

Table 6

Number of regression order selections out of 100 realizations under the second-
order model M, (a liner trend model). Maximum order = 10 (n = 15,20, 50)

Model order

Criterion 1 2 3-6 7-10
AICC 0, 0. 0 89, 93, 94 11, 7, 6 0, 0, 0
WIC 0, 0, 0 87, 92, 98 13, 8, 2 0, 0, 0
WICg 0, 0, 0 85, 86, 88 15, 14, 12 0, 0, 0
BIC 0, 0, 0 79, 90, 98 21,10, 2 0, 0, 0
SIC 0, 0, 0 71, 79, 86 29,21, 14 0, 0, 0
FIC 0, 0, 0 85, 89, 93 15, 11, 7 0, 0, 0
PLS 0, 0, 0 87, 91, 98 13, 9, 2 0, 0, 0

papers for detailed descriptions of the models. For each of the above three models, linear regression models
ranging from 1 to 10 independent variables were used as candidates. The candidate family always includes
the true model. In addition, the design matrices of the candidate models are sequentially nested. That is,
columns 1,..,m — 1 of the design matrix of the candidate model of order m are identical to the design matrix
of the candidate model of order m — 1. Tables 6-8 show the frequencies of model orders selected by the
various criteria. Again, the WIC is the most stable, and therefore most practical criterion among those criteria
considered. The WIC also showed characteristics of AICC and BIC at small and large samples, respectively.

It is interesting to note that for n = 100, the asymptotics became effective for most of the criteria, except
when considering more complex models, such as the ARMA(2,2) or AR(7) models. We also saw that WIC
outperformed the WICsg criteria, although both displayed asymptotically similar behavior at n = 100. We
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100
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Average Criterion Value

20

- .

123 456 7 8 91011121314151617 181920

Order, m

Fig. 2. Average criterion values for AICC (solid line), WIC (long-dashed line), BIC (dashed line). The average criterion values are taken
from 100 replication of samples of size n=35 from the AR(2) model.

Table 7
Number of regression order selections out of 100 realizations under the second-
order model M, (a random walk with drift). Maximum order = 10 (n =
15,20,50)

Model order
Criterion 1 2 3-6 7-10
AlCC 0. 0,0 88, 90, 92 10, 10, 8 2,0, 0
WIC 0, 0. 0 87, 90, 97 1,10, 3 2, 0, 0
WICs 0, 0. 0 85, 88, 90 12, 9,10 3, 3. 0
BIC 0, 0, 0 78, 89, 97 20, 9. 3 2, 2,0
SIC 0, 0, 0 75, 85, 87 19, 11, 13 6, 4, 0
FIC 0, 0, 0 79, 90, 92 20, 10, 8 I, 0, 0
PLS 0, 0, 0 80, 90, 91 19, 10, 9 1, 0, 0

mention that in both simulations of Wei (1992) and Zhang and Wang (1994), the form of the BIC taken
was that of SIC. Finally, our simulation results confirmed the consistency of WIC. Indeed, as n increases, the
model order selected by WIC converges to the true order, at the same fast speed as does BIC.

In conclusion, we recommend the use of WIC for intermediate sample sizes. In addition, at moderately
large to large sample sizes, WIC performed very nearly as did BIC. At the practically small sample sizes,
one may not lose much by using WIC instead of AICC. In the case where one is not certain of the relative
sample size (more often than not this is the case since the terms “small”, “moderate”, and “large” are relative

terms, and depend on the unknown complexity of the true model), the WIC may be a practical and safe
alternative to any criterion.
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Table 8
Number of regression order selections out of 100 realizations under a third-order
model. Maximum order = 10 (n = 15,20, 50)

Model order

Criterion 1-2 3 46 7-10

AlCC 0, 0, 0 75, 88, 91 20, 11, 9 5, 1, 0
WIC 0, 0, 0 74, 88, 96 21, 12, 4 5 0, 0
WICg 0, 0, 0 73, 85, 86 18, 14, 14 9, 1. 0
BIC 0, 0, 0 71, 89, 96 22,11, 4 7, 0, 0
SIC 0, 0, 0 70, 83, 86 20, 15, 14 10, 2, 0
FIC 0, 0, 0 70, 88, 90 17, 10, 10 13, 2, 0
PLS 8,12, 0 74, 80, 89 10, 8,11 8 0, 0
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